
Featured Team Automata

Maurice H. ter Beek1 Guillermina Cledou2 Rolf Hennicker3 José Proença4

1ISTI–CNR, Pisa, Italy

2HASLab, INESC TEC & University of Minho, Portugal

3Ludwig-Maximilians-Universität München, Munich, Germany

4CISTER, ISEP, Polytechnic Institute of Porto, Portugal

T-LADIES kick-off, 6–7 July 2022 1 / 42



Settings

Background

Team Automata:1

• Systems of communicating components: synchronise over shared actions

• Synchronisation types per action:2 peer-2-peer, broadcast, . . .

0 2
join!

leave!

0 2
join!

leave!

0

join?

leave?

Goal: safe communication3 – no message loss, no indefinite waiting, . . .

1ter Beek, Team Automata. Ph.D. thesis, Leiden University, 2003
2ter Beek, Ellis, Kleijn & Rozenberg, Synchronizations in team automata for groupware systems. Comput. Sup. Coop. Work 12, 2003
3ter Beek, Hennicker & Kleijn, Compositionality of Safe Communication in Systems of Team Automata. ICTAC 2020

2 / 42



Settings

Motivation

Many systems today are highly configurable (in terms of features):4

• Large sets of similar systems that share a lot of behaviour but differ in other

configuration n

. . .

configuration 2

configuration 1

0 2
join!

leave!

0 2
join!

leave!

0

join?

leave?

Challenge: system-by-system analysis of safe communication quickly becomes unfeasible

4Classen, Cordy, Schobbens, Heymans, Legay & Raskin, Featured Transition Systems: Foundations for Verifying Variability-
Intensive Systems and Their Application to LTL Model Checking. IEEE Trans. Softw. Eng. 39, 2013

3 / 42



Settings

Approach

Featured Team Automata:5

• Families (sets) of Team Automata model as a Software Product Line

• Single model parametrised by features (e.g.: µ, b), and a feature model (µ⊕b)

0 2

1[µ] join!

[b] join!

[µ] confirm?

[⊤] leave!

0 2

1[µ] join!

[b] join!

[µ] confirm?

[⊤] leave!

fm = µ⊕b

0 1[b] join? [⊤] leave?

[µ] join?

[µ] confirm!

Goal: family-based analysis of safe communication

5ter Beek, Cledou, Hennicker & Proença, Featured Team Automata. FM 2021
4 / 42



Overview

Team Automata

0 2

1[µ] join!

[b] join!

[µ] confirm?

[⊤] leave!

u1 : User

0 2

1[µ] join!

[b] join!

[µ] confirm?

[⊤] leave!

fm = µ⊕b

u2 : User

0 1

[b
]
join

?

[⊤] leave?

[µ] join?

[µ] confirm!

s : Server

0

0

2

join!

join!

leave!

u1 : User

u1 : User⇂b

0

0

2

join!

join!

leave!

u2 : User

u2 : User⇂b

0

0

join?

join?

leave?

s : Server

s : Server⇂b

0, 0, 0 2, 0, 0· · · · · ·

[γ1 ] {}, join, {s}

[γ2 ] {u1}, join, {s}

fm = µ⊕b

[γ3 ] rcp({u1}, join)
[γ4 ] rcp({u2}, join)
[γ5 ] rcp({u1, u2}, join)

0, 0, 0

0, 0, 0

2, 0, 0· · · · · ·
{u1}, join, {s}

rcp({u1}, join)
rcp({u2}, join)
rcp({u1, u2}, join)

featured
(weakly)
receptive

(weakly)
receptive

Main
Theorem

fst({b}, join) = ([1, ∗], [1, 1])
fst({b}, leave)= ([1, ∗], [1, 1])
. . .

−→ = −→
(diagram commutes)

ICTAC’20:

FM’21:

st(join) = ([1, ∗], [1, 1])
st(leave)= ([1, ∗], [1, 1])
. . .

⇂b
⇂b⇂b

Featured
Systems

Systems

Featured
Teams

Teams

Featured
Receptiveness

Receptiveness

Featured
Synchronisation Types

Synchronisation Types

(0, 0, 0)
({u1}, join,{s})−−−−−−−−−→ (2, 0, 0)(0, 0, 0)

({u1,u2}, join,{s})−−−−−−−−−−−→ (2, 2, 0)(0, 0, 0)
({}, join,{s})−−−−−−−→ (0, 0, 0)

might not be desirable

5 / 42



Overview

Team Automata

0 2

1[µ] join!

[b] join!

[µ] confirm?

[⊤] leave!

u1 : User

0 2

1[µ] join!

[b] join!

[µ] confirm?

[⊤] leave!

fm = µ⊕b

u2 : User

0 1

[b
]
join

?

[⊤] leave?

[µ] join?

[µ] confirm!

s : Server

00 2
join!

join!

leave!

u1 : User

u1 : User⇂b

00 2

join!

join!

leave!

u2 : User

u2 : User⇂b

00

join?

join?

leave?

s : Server

s : Server⇂b

0, 0, 0 2, 0, 0· · · · · ·

[γ1 ] {}, join, {s}

[γ2 ] {u1}, join, {s}

fm = µ⊕b

[γ3 ] rcp({u1}, join)
[γ4 ] rcp({u2}, join)
[γ5 ] rcp({u1, u2}, join)

0, 0, 0

0, 0, 0

2, 0, 0· · · · · ·
{u1}, join, {s}

rcp({u1}, join)
rcp({u2}, join)
rcp({u1, u2}, join)

featured
(weakly)
receptive

(weakly)
receptive

Main
Theorem

fst({b}, join) = ([1, ∗], [1, 1])
fst({b}, leave)= ([1, ∗], [1, 1])
. . .

−→ = −→
(diagram commutes)

ICTAC’20:

FM’21:

st(join) = ([1, ∗], [1, 1])
st(leave)= ([1, ∗], [1, 1])
. . .

⇂b
⇂b⇂b

Featured
Systems

Systems

Featured
Teams

Teams

Featured
Receptiveness

Receptiveness

Featured
Synchronisation Types

Synchronisation Types

(0, 0, 0)
({u1}, join,{s})−−−−−−−−−→ (2, 0, 0)

(0, 0, 0)
({u1,u2}, join,{s})−−−−−−−−−−−→ (2, 2, 0)(0, 0, 0)

({}, join,{s})−−−−−−−→ (0, 0, 0)
might not be desirable

6 / 42



Overview

Team Automata

0 2

1[µ] join!

[b] join!

[µ] confirm?

[⊤] leave!

u1 : User

0 2

1[µ] join!

[b] join!

[µ] confirm?

[⊤] leave!

fm = µ⊕b

u2 : User

0 1

[b
]
join

?

[⊤] leave?

[µ] join?

[µ] confirm!

s : Server

00 2
join!

join!

leave!

u1 : User

u1 : User⇂b

00 2
join!

join!

leave!

u2 : User

u2 : User⇂b

00

join?

join?

leave?

s : Server

s : Server⇂b

0, 0, 0 2, 0, 0· · · · · ·

[γ1 ] {}, join, {s}

[γ2 ] {u1}, join, {s}

fm = µ⊕b

[γ3 ] rcp({u1}, join)
[γ4 ] rcp({u2}, join)
[γ5 ] rcp({u1, u2}, join)

0, 0, 0

0, 0, 0

2, 0, 0· · · · · ·
{u1}, join, {s}

rcp({u1}, join)
rcp({u2}, join)
rcp({u1, u2}, join)

featured
(weakly)
receptive

(weakly)
receptive

Main
Theorem

fst({b}, join) = ([1, ∗], [1, 1])
fst({b}, leave)= ([1, ∗], [1, 1])
. . .

−→ = −→
(diagram commutes)

ICTAC’20:

FM’21:

st(join) = ([1, ∗], [1, 1])
st(leave)= ([1, ∗], [1, 1])
. . .

⇂b
⇂b⇂b

Featured
Systems

Systems

Featured
Teams

Teams

Featured
Receptiveness

Receptiveness

Featured
Synchronisation Types

Synchronisation Types

(0, 0, 0)
({u1}, join,{s})−−−−−−−−−→ (2, 0, 0)

(0, 0, 0)
({u1,u2}, join,{s})−−−−−−−−−−−→ (2, 2, 0)

(0, 0, 0)
({}, join,{s})−−−−−−−→ (0, 0, 0)

might not be desirable

7 / 42



Overview

Team Automata

0 2

1[µ] join!

[b] join!

[µ] confirm?

[⊤] leave!

u1 : User

0 2

1[µ] join!

[b] join!

[µ] confirm?

[⊤] leave!

fm = µ⊕b

u2 : User

0 1

[b
]
join

?

[⊤] leave?

[µ] join?

[µ] confirm!

s : Server

00 2

join!

join!

leave!

u1 : User

u1 : User⇂b

00 2

join!

join!

leave!

u2 : User

u2 : User⇂b

00

join?

join?

leave?

s : Server

s : Server⇂b

0, 0, 0 2, 0, 0· · · · · ·

[γ1 ] {}, join, {s}

[γ2 ] {u1}, join, {s}

fm = µ⊕b

[γ3 ] rcp({u1}, join)
[γ4 ] rcp({u2}, join)
[γ5 ] rcp({u1, u2}, join)

0, 0, 0

0, 0, 0

2, 0, 0· · · · · ·
{u1}, join, {s}

rcp({u1}, join)
rcp({u2}, join)
rcp({u1, u2}, join)

featured
(weakly)
receptive

(weakly)
receptive

Main
Theorem

fst({b}, join) = ([1, ∗], [1, 1])
fst({b}, leave)= ([1, ∗], [1, 1])
. . .

−→ = −→
(diagram commutes)

ICTAC’20:

FM’21:

st(join) = ([1, ∗], [1, 1])
st(leave)= ([1, ∗], [1, 1])
. . .

⇂b
⇂b⇂b

Featured
Systems

Systems

Featured
Teams

Teams

Featured
Receptiveness

Receptiveness

Featured
Synchronisation Types

Synchronisation Types

(0, 0, 0)
({u1}, join,{s})−−−−−−−−−→ (2, 0, 0)(0, 0, 0)

({u1,u2}, join,{s})−−−−−−−−−−−→ (2, 2, 0)

(0, 0, 0)
({}, join,{s})−−−−−−−→ (0, 0, 0)

might not be desirable 8 / 42



Overview

Team Automata

0 2

1[µ] join!

[b] join!

[µ] confirm?

[⊤] leave!

u1 : User

0 2

1[µ] join!

[b] join!

[µ] confirm?

[⊤] leave!

fm = µ⊕b

u2 : User

0 1

[b
]
join

?

[⊤] leave?

[µ] join?

[µ] confirm!

s : Server

0

0

2

join!

join!

leave!

u1 : User

u1 : User⇂b

0

0

2

join!

join!

leave!

u2 : User

u2 : User⇂b

0

0

join?

join?

leave?

s : Server

s : Server⇂b

0, 0, 0 2, 0, 0· · · · · ·

[γ1 ] {}, join, {s}

[γ2 ] {u1}, join, {s}

fm = µ⊕b

[γ3 ] rcp({u1}, join)
[γ4 ] rcp({u2}, join)
[γ5 ] rcp({u1, u2}, join)

0, 0, 0

0, 0, 0

2, 0, 0· · · · · ·
{u1}, join, {s}

rcp({u1}, join)
rcp({u2}, join)
rcp({u1, u2}, join)

featured
(weakly)
receptive

(weakly)
receptive

Main
Theorem

fst({b}, join) = ([1, ∗], [1, 1])
fst({b}, leave)= ([1, ∗], [1, 1])
. . .

−→ = −→
(diagram commutes)

ICTAC’20:

FM’21:

st(join) = ([1, ∗], [1, 1])
st(leave)= ([1, ∗], [1, 1])
. . .

⇂b
⇂b⇂b

Featured
Systems

Systems

Featured
Teams

Teams

Featured
Receptiveness

Receptiveness

Featured
Synchronisation Types

Synchronisation Types

(0, 0, 0)
({u1}, join,{s})−−−−−−−−−→ (2, 0, 0)(0, 0, 0)

({u1,u2}, join,{s})−−−−−−−−−−−→ (2, 2, 0)(0, 0, 0)
({}, join,{s})−−−−−−−→ (0, 0, 0)

might not be desirable

9 / 42



Overview

Team Automata

0 2

1[µ] join!

[b] join!

[µ] confirm?

[⊤] leave!

u1 : User

0 2

1[µ] join!

[b] join!

[µ] confirm?

[⊤] leave!

fm = µ⊕b

u2 : User

0 1

[b
]
join

?

[⊤] leave?

[µ] join?

[µ] confirm!

s : Server

0

0

2

join!

join!

leave!

u1 : User

u1 : User⇂b

0

0

2

join!

join!

leave!

u2 : User

u2 : User⇂b

0

0

join?

join?

leave?

s : Server

s : Server⇂b

0, 0, 0 2, 0, 0· · · · · ·

[γ1 ] {}, join, {s}

[γ2 ] {u1}, join, {s}

fm = µ⊕b

[γ3 ] rcp({u1}, join)
[γ4 ] rcp({u2}, join)
[γ5 ] rcp({u1, u2}, join)

0, 0, 0

0, 0, 0

2, 0, 0· · · · · ·
{u1}, join, {s}

rcp({u1}, join)
rcp({u2}, join)
rcp({u1, u2}, join)

featured
(weakly)
receptive

(weakly)
receptive

Main
Theorem

fst({b}, join) = ([1, ∗], [1, 1])
fst({b}, leave)= ([1, ∗], [1, 1])
. . .

−→ = −→
(diagram commutes)

ICTAC’20:

FM’21:

st(join) = ([1, ∗], [1, 1])
st(leave)= ([1, ∗], [1, 1])
. . .

⇂b
⇂b⇂b

Featured
Systems

Systems

Featured
Teams

Teams

Featured
Receptiveness

Receptiveness

Featured
Synchronisation Types

Synchronisation Types

(0, 0, 0)
({u1}, join,{s})−−−−−−−−−→ (2, 0, 0)(0, 0, 0)

({u1,u2}, join,{s})−−−−−−−−−−−→ (2, 2, 0)(0, 0, 0)
({}, join,{s})−−−−−−−→ (0, 0, 0)

might not be desirable

10 / 42



Overview

Team Automata

0 2

1[µ] join!

[b] join!

[µ] confirm?

[⊤] leave!

u1 : User

0 2

1[µ] join!

[b] join!

[µ] confirm?

[⊤] leave!

fm = µ⊕b

u2 : User

0 1

[b
]
join

?

[⊤] leave?

[µ] join?

[µ] confirm!

s : Server

00 2
join!

join!

leave!

u1 : User

u1 : User⇂b

00 2
join!

join!

leave!

u2 : User

u2 : User⇂b

00

join?

join?

leave?

s : Server

s : Server⇂b

0, 0, 0 2, 0, 0· · · · · ·

[γ1 ] {}, join, {s}

[γ2 ] {u1}, join, {s}

fm = µ⊕b

[γ3 ] rcp({u1}, join)
[γ4 ] rcp({u2}, join)
[γ5 ] rcp({u1, u2}, join)

0, 0, 00, 0, 0 2, 0, 0· · · · · ·
{u1}, join, {s}

rcp({u1}, join)
rcp({u2}, join)
rcp({u1, u2}, join)

featured
(weakly)
receptive

(weakly)
receptive

Main
Theorem

fst({b}, join) = ([1, ∗], [1, 1])
fst({b}, leave)= ([1, ∗], [1, 1])
. . .

−→ = −→
(diagram commutes)

ICTAC’20:

FM’21:

st(join) = ([1, ∗], [1, 1])
st(leave)= ([1, ∗], [1, 1])
. . .

⇂b
⇂b⇂b

Featured
Systems

Systems

Featured
Teams

Teams

Featured
Receptiveness

Receptiveness

Featured
Synchronisation Types

Synchronisation Types

(0, 0, 0)
({u1}, join,{s})−−−−−−−−−→ (2, 0, 0)(0, 0, 0)

({u1,u2}, join,{s})−−−−−−−−−−−→ (2, 2, 0)(0, 0, 0)
({}, join,{s})−−−−−−−→ (0, 0, 0)

might not be desirable

11 / 42



Overview

Team Automata

0 2

1[µ] join!

[b] join!

[µ] confirm?

[⊤] leave!

u1 : User

0 2

1[µ] join!

[b] join!

[µ] confirm?

[⊤] leave!

fm = µ⊕b

u2 : User

0 1

[b
]
join

?

[⊤] leave?

[µ] join?

[µ] confirm!

s : Server

00 2
join!

join!

leave!

u1 : User

u1 : User⇂b

00 2
join!

join!

leave!

u2 : User

u2 : User⇂b

00

join?

join?

leave?

s : Server

s : Server⇂b

0, 0, 0 2, 0, 0· · · · · ·

[γ1 ] {}, join, {s}

[γ2 ] {u1}, join, {s}

fm = µ⊕b

[γ3 ] rcp({u1}, join)
[γ4 ] rcp({u2}, join)
[γ5 ] rcp({u1, u2}, join)

0, 0, 00, 0, 0 2, 0, 0· · · · · ·
{u1}, join, {s}

rcp({u1}, join)
rcp({u2}, join)
rcp({u1, u2}, join)

featured
(weakly)
receptive

(weakly)
receptive

Main
Theorem

fst({b}, join) = ([1, ∗], [1, 1])
fst({b}, leave)= ([1, ∗], [1, 1])
. . .

−→ = −→
(diagram commutes)

ICTAC’20:

FM’21:

st(join) = ([1, ∗], [1, 1])
st(leave)= ([1, ∗], [1, 1])
. . .

⇂b
⇂b⇂b

Featured
Systems

Systems

Featured
Teams

Teams

Featured
Receptiveness

Receptiveness

Featured
Synchronisation Types

Synchronisation Types

(0, 0, 0)
({u1}, join,{s})−−−−−−−−−→ (2, 0, 0)(0, 0, 0)

({u1,u2}, join,{s})−−−−−−−−−−−→ (2, 2, 0)(0, 0, 0)
({}, join,{s})−−−−−−−→ (0, 0, 0)

might not be desirable

12 / 42



Overview

Featured Team Automata

0 2

1[µ] join!

[b] join!

[µ] confirm?

[⊤] leave!

u1 : User

0 2

1[µ] join!

[b] join!

[µ] confirm?

[⊤] leave!

fm = µ⊕b

u2 : User

0 1

[b
]
join

?

[⊤] leave?

[µ] join?

[µ] confirm!

s : Server

0

0

2

join!

join!

leave!

u1 : User

u1 : User⇂b

0

0

2

join!

join!

leave!

u2 : User

u2 : User⇂b

0

0

join?

join?

leave?

s : Server

s : Server⇂b

0, 0, 0 2, 0, 0· · · · · ·

[γ1 ] {}, join, {s}

[γ2 ] {u1}, join, {s}

fm = µ⊕b

[γ3 ] rcp({u1}, join)
[γ4 ] rcp({u2}, join)
[γ5 ] rcp({u1, u2}, join)

0, 0, 0

0, 0, 0

2, 0, 0· · · · · ·
{u1}, join, {s}

rcp({u1}, join)
rcp({u2}, join)
rcp({u1, u2}, join)

featured
(weakly)
receptive

(weakly)
receptive

Main
Theorem

fst({b}, join) = ([1, ∗], [1, 1])
fst({b}, leave)= ([1, ∗], [1, 1])
. . .

−→ = −→
(diagram commutes)

ICTAC’20:

FM’21:

st(join) = ([1, ∗], [1, 1])
st(leave)= ([1, ∗], [1, 1])
. . .

⇂b
⇂b⇂b

Featured
Systems

Systems

Featured
Teams

Teams

Featured
Receptiveness

Receptiveness

Featured
Synchronisation Types

Synchronisation Types

(0, 0, 0)
({u1}, join,{s})−−−−−−−−−→ (2, 0, 0)(0, 0, 0)

({u1,u2}, join,{s})−−−−−−−−−−−→ (2, 2, 0)(0, 0, 0)
({}, join,{s})−−−−−−−→ (0, 0, 0)

might not be desirable

13 / 42



Overview

Featured Team Automata

0 2

1[µ] join!

[b] join!

[µ] confirm?

[⊤] leave!

u1 : User

0 2

1[µ] join!

[b] join!

[µ] confirm?

[⊤] leave!

fm = µ⊕b

u2 : User

0 1

[b
]
join

?

[⊤] leave?

[µ] join?

[µ] confirm!

s : Server

0

0

2

join!

join!

leave!

u1 : User

u1 : User⇂b

0

0

2

join!

join!

leave!

u2 : User

u2 : User⇂b

0

0

join?

join?

leave?

s : Server

s : Server⇂b

0, 0, 0 2, 0, 0· · · · · ·

[γ1 ] {}, join, {s}

[γ2 ] {u1}, join, {s}

fm = µ⊕b

[γ3 ] rcp({u1}, join)
[γ4 ] rcp({u2}, join)
[γ5 ] rcp({u1, u2}, join)

0, 0, 0

0, 0, 0

2, 0, 0· · · · · ·
{u1}, join, {s}

rcp({u1}, join)
rcp({u2}, join)
rcp({u1, u2}, join)

featured
(weakly)
receptive

(weakly)
receptive

Main
Theorem

fst({b}, join) = ([1, ∗], [1, 1])
fst({b}, leave)= ([1, ∗], [1, 1])
. . .

−→ = −→
(diagram commutes)

ICTAC’20:

FM’21:

st(join) = ([1, ∗], [1, 1])
st(leave)= ([1, ∗], [1, 1])
. . .

⇂b

⇂b⇂b

Featured
Systems

Systems

Featured
Teams

Teams

Featured
Receptiveness

Receptiveness

Featured
Synchronisation Types

Synchronisation Types

(0, 0, 0)
({u1}, join,{s})−−−−−−−−−→ (2, 0, 0)(0, 0, 0)

({u1,u2}, join,{s})−−−−−−−−−−−→ (2, 2, 0)(0, 0, 0)
({}, join,{s})−−−−−−−→ (0, 0, 0)

might not be desirable

14 / 42



Overview

Featured Team Automata

0 2

1[µ] join!

[b] join!

[µ] confirm?

[⊤] leave!

u1 : User

0 2

1[µ] join!

[b] join!

[µ] confirm?

[⊤] leave!

fm = µ⊕b

u2 : User

0 1

[b
]
join

?

[⊤] leave?

[µ] join?

[µ] confirm!

s : Server

0

0

2

join!

join!

leave!

u1 : User

u1 : User⇂b

0

0

2

join!

join!

leave!

u2 : User

u2 : User⇂b

0

0

join?

join?

leave?

s : Server

s : Server⇂b

0, 0, 0 2, 0, 0· · · · · ·

[γ1 ] {}, join, {s}

[γ2 ] {u1}, join, {s}

fm = µ⊕b

[γ3 ] rcp({u1}, join)
[γ4 ] rcp({u2}, join)
[γ5 ] rcp({u1, u2}, join)

0, 0, 0

0, 0, 0

2, 0, 0· · · · · ·
{u1}, join, {s}

rcp({u1}, join)
rcp({u2}, join)
rcp({u1, u2}, join)

featured
(weakly)
receptive

(weakly)
receptive

Main
Theorem

fst({b}, join) = ([1, ∗], [1, 1])
fst({b}, leave)= ([1, ∗], [1, 1])
. . .

−→ = −→
(diagram commutes)

ICTAC’20:

FM’21:

st(join) = ([1, ∗], [1, 1])
st(leave)= ([1, ∗], [1, 1])
. . .

⇂b

⇂b⇂b

Featured
Systems

Systems

Featured
Teams

Teams

Featured
Receptiveness

Receptiveness

Featured
Synchronisation Types

Synchronisation Types

(0, 0, 0)
({u1}, join,{s})−−−−−−−−−→ (2, 0, 0)(0, 0, 0)

({u1,u2}, join,{s})−−−−−−−−−−−→ (2, 2, 0)(0, 0, 0)
({}, join,{s})−−−−−−−→ (0, 0, 0)

might not be desirable

15 / 42



Overview

Featured Team Automata

0 2

1[µ] join!

[b] join!

[µ] confirm?

[⊤] leave!

u1 : User

0 2

1[µ] join!

[b] join!

[µ] confirm?

[⊤] leave!

fm = µ⊕b

u2 : User

0 1

[b
]
join

?

[⊤] leave?

[µ] join?

[µ] confirm!

s : Server

0

0

2

join!

join!

leave!

u1 : User

u1 : User⇂b

0

0

2

join!

join!

leave!

u2 : User

u2 : User⇂b

0

0

join?

join?

leave?

s : Server

s : Server⇂b

0, 0, 0 2, 0, 0· · · · · ·

[γ1 ] {}, join, {s}

[γ2 ] {u1}, join, {s}

fm = µ⊕b

[γ3 ] rcp({u1}, join)
[γ4 ] rcp({u2}, join)
[γ5 ] rcp({u1, u2}, join)

0, 0, 0

0, 0, 0

2, 0, 0· · · · · ·
{u1}, join, {s}

rcp({u1}, join)
rcp({u2}, join)
rcp({u1, u2}, join)

featured
(weakly)
receptive

(weakly)
receptive

Main
Theorem

fst({b}, join) = ([1, ∗], [1, 1])
fst({b}, leave)= ([1, ∗], [1, 1])
. . .

−→ = −→
(diagram commutes)

ICTAC’20:

FM’21:

st(join) = ([1, ∗], [1, 1])
st(leave)= ([1, ∗], [1, 1])
. . .

⇂b

⇂b

⇂b

Featured
Systems

Systems

Featured
Teams

Teams

Featured
Receptiveness

Receptiveness

Featured
Synchronisation Types

Synchronisation Types

(0, 0, 0)
({u1}, join,{s})−−−−−−−−−→ (2, 0, 0)(0, 0, 0)

({u1,u2}, join,{s})−−−−−−−−−−−→ (2, 2, 0)(0, 0, 0)
({}, join,{s})−−−−−−−→ (0, 0, 0)

might not be desirable

16 / 42



Overview

Featured Team Automata

0 2

1[µ] join!

[b] join!

[µ] confirm?

[⊤] leave!

u1 : User

0 2

1[µ] join!

[b] join!

[µ] confirm?

[⊤] leave!

fm = µ⊕b

u2 : User

0 1

[b
]
join

?

[⊤] leave?

[µ] join?

[µ] confirm!

s : Server

0

0

2

join!

join!

leave!

u1 : User

u1 : User⇂b

0

0

2

join!

join!

leave!

u2 : User

u2 : User⇂b

0

0

join?

join?

leave?

s : Server

s : Server⇂b

0, 0, 0 2, 0, 0· · · · · ·

[γ1 ] {}, join, {s}

[γ2 ] {u1}, join, {s}

fm = µ⊕b

[γ3 ] rcp({u1}, join)
[γ4 ] rcp({u2}, join)
[γ5 ] rcp({u1, u2}, join)

0, 0, 0

0, 0, 0

2, 0, 0· · · · · ·
{u1}, join, {s}

rcp({u1}, join)
rcp({u2}, join)
rcp({u1, u2}, join)

featured
(weakly)
receptive

(weakly)
receptive

Main
Theorem

fst({b}, join) = ([1, ∗], [1, 1])
fst({b}, leave)= ([1, ∗], [1, 1])
. . .

−→ = −→
(diagram commutes)

ICTAC’20:

FM’21:

st(join) = ([1, ∗], [1, 1])
st(leave)= ([1, ∗], [1, 1])
. . .

⇂b

⇂b

⇂b

Featured
Systems

Systems

Featured
Teams

Teams

Featured
Receptiveness

Receptiveness

Featured
Synchronisation Types

Synchronisation Types

(0, 0, 0)
({u1}, join,{s})−−−−−−−−−→ (2, 0, 0)(0, 0, 0)

({u1,u2}, join,{s})−−−−−−−−−−−→ (2, 2, 0)(0, 0, 0)
({}, join,{s})−−−−−−−→ (0, 0, 0)

might not be desirable

17 / 42



Overview

Featured Team Automata

0 2

1[µ] join!

[b] join!

[µ] confirm?

[⊤] leave!

u1 : User

0 2

1[µ] join!

[b] join!

[µ] confirm?

[⊤] leave!

fm = µ⊕b

u2 : User

0 1

[b
]
join

?

[⊤] leave?

[µ] join?

[µ] confirm!

s : Server

0

0

2

join!

join!

leave!

u1 : User

u1 : User⇂b

0

0

2

join!

join!

leave!

u2 : User

u2 : User⇂b

0

0

join?

join?

leave?

s : Server

s : Server⇂b

0, 0, 0 2, 0, 0· · · · · ·

[γ1 ] {}, join, {s}

[γ2 ] {u1}, join, {s}

fm = µ⊕b

[γ3 ] rcp({u1}, join)
[γ4 ] rcp({u2}, join)
[γ5 ] rcp({u1, u2}, join)

0, 0, 0

0, 0, 0

2, 0, 0· · · · · ·
{u1}, join, {s}

rcp({u1}, join)
rcp({u2}, join)
rcp({u1, u2}, join)

featured
(weakly)
receptive

(weakly)
receptive

Main
Theorem

fst({b}, join) = ([1, ∗], [1, 1])
fst({b}, leave)= ([1, ∗], [1, 1])
. . .

−→ = −→
(diagram commutes)

ICTAC’20:

FM’21:

st(join) = ([1, ∗], [1, 1])
st(leave)= ([1, ∗], [1, 1])
. . .

⇂b

⇂b

⇂b

Featured
Systems

Systems

Featured
Teams

Teams

Featured
Receptiveness

Receptiveness

Featured
Synchronisation Types

Synchronisation Types

(0, 0, 0)
({u1}, join,{s})−−−−−−−−−→ (2, 0, 0)(0, 0, 0)

({u1,u2}, join,{s})−−−−−−−−−−−→ (2, 2, 0)(0, 0, 0)
({}, join,{s})−−−−−−−→ (0, 0, 0)

might not be desirable

18 / 42



Overview

Featured Team Automata

0 2

1[µ] join!

[b] join!

[µ] confirm?

[⊤] leave!

u1 : User

0 2

1[µ] join!

[b] join!

[µ] confirm?

[⊤] leave!

fm = µ⊕b

u2 : User

0 1

[b
]
join

?

[⊤] leave?

[µ] join?

[µ] confirm!

s : Server

0

0

2

join!

join!

leave!

u1 : User

u1 : User⇂b

0

0

2

join!

join!

leave!

u2 : User

u2 : User⇂b

0

0

join?

join?

leave?

s : Server

s : Server⇂b

0, 0, 0 2, 0, 0· · · · · ·

[γ1 ] {}, join, {s}

[γ2 ] {u1}, join, {s}

fm = µ⊕b

[γ3 ] rcp({u1}, join)
[γ4 ] rcp({u2}, join)
[γ5 ] rcp({u1, u2}, join)

0, 0, 0

0, 0, 0

2, 0, 0· · · · · ·
{u1}, join, {s}

rcp({u1}, join)
rcp({u2}, join)
rcp({u1, u2}, join)

featured
(weakly)
receptive

(weakly)
receptive

Main
Theorem

fst({b}, join) = ([1, ∗], [1, 1])
fst({b}, leave)= ([1, ∗], [1, 1])
. . .

−→ = −→
(diagram commutes)

ICTAC’20:

FM’21:

st(join) = ([1, ∗], [1, 1])
st(leave)= ([1, ∗], [1, 1])
. . .

⇂b

⇂b

⇂b

Featured
Systems

Systems

Featured
Teams

Teams

Featured
Receptiveness

Receptiveness

Featured
Synchronisation Types

Synchronisation Types

(0, 0, 0)
({u1}, join,{s})−−−−−−−−−→ (2, 0, 0)(0, 0, 0)

({u1,u2}, join,{s})−−−−−−−−−−−→ (2, 2, 0)(0, 0, 0)
({}, join,{s})−−−−−−−→ (0, 0, 0)

might not be desirable

19 / 42



Overview

Featured Team Automata

0 2

1[µ] join!

[b] join!

[µ] confirm?

[⊤] leave!

u1 : User

0 2

1[µ] join!

[b] join!

[µ] confirm?

[⊤] leave!

fm = µ⊕b

u2 : User

0 1

[b
]
join

?

[⊤] leave?

[µ] join?

[µ] confirm!

s : Server

0

0

2

join!

join!

leave!

u1 : User

u1 : User⇂b

0

0

2

join!

join!

leave!

u2 : User

u2 : User⇂b

0

0

join?

join?

leave?

s : Server

s : Server⇂b

0, 0, 0 2, 0, 0· · · · · ·

[γ1 ] {}, join, {s}

[γ2 ] {u1}, join, {s}

fm = µ⊕b

[γ3 ] rcp({u1}, join)
[γ4 ] rcp({u2}, join)
[γ5 ] rcp({u1, u2}, join)

0, 0, 0

0, 0, 0

2, 0, 0· · · · · ·
{u1}, join, {s}

rcp({u1}, join)
rcp({u2}, join)
rcp({u1, u2}, join)

featured
(weakly)
receptive

(weakly)
receptive

Main
Theorem

fst({b}, join) = ([1, ∗], [1, 1])
fst({b}, leave)= ([1, ∗], [1, 1])
. . .

−→ = −→
(diagram commutes)

ICTAC’20:

FM’21:

st(join) = ([1, ∗], [1, 1])
st(leave)= ([1, ∗], [1, 1])
. . .

⇂b
⇂b⇂b

Featured
Systems

Systems

Featured
Teams

Teams

Featured
Receptiveness

Receptiveness

Featured
Synchronisation Types

Synchronisation Types

(0, 0, 0)
({u1}, join,{s})−−−−−−−−−→ (2, 0, 0)(0, 0, 0)

({u1,u2}, join,{s})−−−−−−−−−−−→ (2, 2, 0)(0, 0, 0)
({}, join,{s})−−−−−−−→ (0, 0, 0)

might not be desirable

20 / 42



Overview

Featured Team Automata

0 2

1[µ] join!

[b] join!

[µ] confirm?

[⊤] leave!

u1 : User

0 2

1[µ] join!

[b] join!

[µ] confirm?

[⊤] leave!

fm = µ⊕b

u2 : User

0 1

[b
]
join

?

[⊤] leave?

[µ] join?

[µ] confirm!

s : Server

0

0

2

join!

join!

leave!

u1 : User

u1 : User⇂b

0

0

2

join!

join!

leave!

u2 : User

u2 : User⇂b

0

0

join?

join?

leave?

s : Server

s : Server⇂b

0, 0, 0 2, 0, 0· · · · · ·

[γ1 ] {}, join, {s}

[γ2 ] {u1}, join, {s}

fm = µ⊕b

[γ3 ] rcp({u1}, join)
[γ4 ] rcp({u2}, join)
[γ5 ] rcp({u1, u2}, join)

0, 0, 0

0, 0, 0

2, 0, 0· · · · · ·
{u1}, join, {s}

rcp({u1}, join)
rcp({u2}, join)
rcp({u1, u2}, join)

featured
(weakly)
receptive

(weakly)
receptive

Main
Theorem

fst({b}, join) = ([1, ∗], [1, 1])
fst({b}, leave)= ([1, ∗], [1, 1])
. . .

−→ = −→
(diagram commutes)

ICTAC’20:

FM’21:

st(join) = ([1, ∗], [1, 1])
st(leave)= ([1, ∗], [1, 1])
. . .

⇂b
⇂b⇂b

Featured
Systems

Systems

Featured
Teams

Teams

Featured
Receptiveness

Receptiveness

Featured
Synchronisation Types

Synchronisation Types

(0, 0, 0)
({u1}, join,{s})−−−−−−−−−→ (2, 0, 0)(0, 0, 0)

({u1,u2}, join,{s})−−−−−−−−−−−→ (2, 2, 0)(0, 0, 0)
({}, join,{s})−−−−−−−→ (0, 0, 0)

might not be desirable

21 / 42



Overview

Featured Team Automata

0 2

1[µ] join!

[b] join!

[µ] confirm?

[⊤] leave!

u1 : User

0 2

1[µ] join!

[b] join!

[µ] confirm?

[⊤] leave!

fm = µ⊕b

u2 : User

0 1

[b
]
join

?

[⊤] leave?

[µ] join?

[µ] confirm!

s : Server

0

0

2

join!

join!

leave!

u1 : User

u1 : User⇂b

0

0

2

join!

join!

leave!

u2 : User

u2 : User⇂b

0

0

join?

join?

leave?

s : Server

s : Server⇂b

0, 0, 0 2, 0, 0· · · · · ·

[γ1 ] {}, join, {s}

[γ2 ] {u1}, join, {s}

fm = µ⊕b

[γ3 ] rcp({u1}, join)
[γ4 ] rcp({u2}, join)
[γ5 ] rcp({u1, u2}, join)

0, 0, 0

0, 0, 0

2, 0, 0· · · · · ·
{u1}, join, {s}

rcp({u1}, join)
rcp({u2}, join)
rcp({u1, u2}, join)

featured
(weakly)
receptive

(weakly)
receptive

Main
Theorem

fst({b}, join) = ([1, ∗], [1, 1])
fst({b}, leave)= ([1, ∗], [1, 1])
. . .

−→ = −→
(diagram commutes)

ICTAC’20:

FM’21:

st(join) = ([1, ∗], [1, 1])
st(leave)= ([1, ∗], [1, 1])
. . .

⇂b
⇂b⇂b

Featured
Systems

Systems

Featured
Teams

Teams

Featured
Receptiveness

Receptiveness

Featured
Synchronisation Types

Synchronisation Types

Online prototype: http://arcatools.org/feta

(0, 0, 0)
({u1}, join,{s})−−−−−−−−−→ (2, 0, 0)(0, 0, 0)

({u1,u2}, join,{s})−−−−−−−−−−−→ (2, 2, 0)(0, 0, 0)
({}, join,{s})−−−−−−−→ (0, 0, 0)

might not be desirable

22 / 42

http://arcatools.org/feta


Overview

Featured Team Automata

0 2

1[µ] join!

[b] join!

[µ] confirm?

[⊤] leave!

u1 : User

0 2

1[µ] join!

[b] join!

[µ] confirm?

[⊤] leave!

fm = µ⊕b

u2 : User

0 1

[b
]
join

?

[⊤] leave?

[µ] join?

[µ] confirm!

s : Server

0

0

2

join!

join!

leave!

u1 : User

u1 : User⇂b

0

0

2

join!

join!

leave!

u2 : User

u2 : User⇂b

0

0

join?

join?

leave?

s : Server

s : Server⇂b

0, 0, 0 2, 0, 0· · · · · ·

[γ1 ] {}, join, {s}

[γ2 ] {u1}, join, {s}

fm = µ⊕b

[γ3 ] rcp({u1}, join)
[γ4 ] rcp({u2}, join)
[γ5 ] rcp({u1, u2}, join)

0, 0, 0

0, 0, 0

2, 0, 0· · · · · ·
{u1}, join, {s}

rcp({u1}, join)
rcp({u2}, join)
rcp({u1, u2}, join)

featured
(weakly)
receptive

(weakly)
receptive

Main
Theorem

fst({b}, join) = ([1, ∗], [1, 1])
fst({b}, leave)= ([1, ∗], [1, 1])
. . .

−→ = −→
(diagram commutes)

ICTAC’20:

FM’21:

st(join) = ([1, ∗], [1, 1])
st(leave)= ([1, ∗], [1, 1])
. . .

⇂b
⇂b⇂b

Featured
Systems

Systems

Featured
Teams

Teams

Featured
Receptiveness

Receptiveness

Featured
Synchronisation Types

Synchronisation Types

Online prototype: http://arcatools.org/feta

(0, 0, 0)
({u1}, join,{s})−−−−−−−−−→ (2, 0, 0)(0, 0, 0)

({u1,u2}, join,{s})−−−−−−−−−−−→ (2, 2, 0)(0, 0, 0)
({}, join,{s})−−−−−−−→ (0, 0, 0)

might not be desirable

23 / 42

http://arcatools.org/feta


Building FETA Transitions

Featured Team Automata Transitions

fm = µ⊕b

00 2

1

[b] join!

[b] join!

[µ] join! [µ] confirm?

[⊤] leave!

u1 : User

00 2

1

[b] join!

[b] join!

[µ] join! [µ] confirm?

[⊤] leave!

u2 : User

00 1[b] join?

[b] join?

[⊤] leave?

[µ] join?

[µ] confirm!

s : Server

Transitions are constrained with feature expressions by:

• local feature expressions: characterise the products with all local transitions present

• fst: characterise the products that satisfy the corresponding synchronisation type

fst({µ}, join) = ([1, 1], [1, 1]) fst({b}, join) = ([1, ∗], [1, 1])

(0, 0, 0)
[

b∧b∧b∧b∧¬ µ

]({u1,u2}, join,{s})−−−−−−−−−−−−−−−−−−−−−→fst[S] (2, 2, 0)
24 / 42



Building FETA Transitions

Featured Team Automata Transitions

fm = µ⊕b

00 2

1

[b] join!

[b] join!

[µ] join! [µ] confirm?

[⊤] leave!

u1 : User

00 2

1

[b] join!

[b] join!

[µ] join! [µ] confirm?

[⊤] leave!

u2 : User

00 1[b] join?

[b] join?

[⊤] leave?

[µ] join?

[µ] confirm!

s : Server

Transitions are constrained with feature expressions by:

• local feature expressions: characterise the products with all local transitions present

• fst: characterise the products that satisfy the corresponding synchronisation type

fst({µ}, join) = ([1, 1], [1, 1]) fst({b}, join) = ([1, ∗], [1, 1])

(0, 0, 0)
[b∧b∧b

∧b∧¬ µ

]({u1,u2}, join,{s})−−−−−−−−−−−−−−−−−−−−−→fst[S] (2, 2, 0)
25 / 42



Building FETA Transitions

Featured Team Automata Transitions

fm = µ⊕b

00 2

1

[b] join!

[b] join!

[µ] join! [µ] confirm?

[⊤] leave!

u1 : User

00 2

1

[b] join!

[b] join!

[µ] join! [µ] confirm?

[⊤] leave!

u2 : User

00 1[b] join?

[b] join?

[⊤] leave?

[µ] join?

[µ] confirm!

s : Server

Transitions are constrained with feature expressions by:

• local feature expressions: characterise the products with all local transitions present

• fst: characterise the products that satisfy the corresponding synchronisation type

fst({µ}, join) = ([1, 1], [1, 1]) fst({b}, join) = ([1, ∗], [1, 1])

(0, 0, 0)
[b∧b∧b∧b∧¬ µ]({u1,u2}, join,{s})−−−−−−−−−−−−−−−−−−−−−→fst[S] (2, 2, 0)

26 / 42



Building FETA Requirements for Communication Safety

Featured Receptiveness Requirements

fm = µ⊕b

0 2

1[µ] join!

[b] join!

[µ] confirm?

[⊤] leave!

u1 : User

0 2

1[µ] join!

[b] join!

[µ] confirm?

[⊤] leave!

u2 : User

0 1[b] join? [⊤] leave?

[µ] join?

[µ] confirm!

s : Server

fst({µ}, join) = ([1, 1], [1, 1]) fst({b}, join) = ([1, ∗], [1, 1])

At state (0, 0, 0):

[

µ ∨ b ∧ fm

] rcp({u1}, join) ∧ [

fm

] rcp({u2}, join) ∧ [

µ ∨ b ∧b ∧ ¬ µ ∧ fm

] rcp({u1, u2}, join)

Featured receptiveness requirements are constrained with feature expression by:

• local feature expressions: characterise products with enabled local transitions
• fst: characterise products with the correct number of senders
• reachable states: characterise products where the state is reachable

27 / 42



Building FETA Requirements for Communication Safety

Featured Receptiveness Requirements

fm = µ⊕b

0 2

1[µ] join!

[b] join!

[µ] confirm?

[⊤] leave!

u1 : User

0 2

1[µ] join!

[b] join!

[µ] confirm?

[⊤] leave!

u2 : User

0 1[b] join? [⊤] leave?

[µ] join?

[µ] confirm!

s : Server

fst({µ}, join) = ([1, 1], [1, 1]) fst({b}, join) = ([1, ∗], [1, 1])

At state (0, 0, 0):

[

µ ∨ b ∧ fm

] rcp({u1}, join) ∧ [

fm

] rcp({u2}, join) ∧ [

µ ∨ b ∧b ∧ ¬ µ ∧ fm

] rcp({u1, u2}, join)

Featured receptiveness requirements are constrained with feature expression by:

• local feature expressions: characterise products with enabled local transitions
• fst: characterise products with the correct number of senders
• reachable states: characterise products where the state is reachable

28 / 42



Building FETA Requirements for Communication Safety

Featured Receptiveness Requirements

fm = µ⊕b

0 2

1[µ] join!

[b] join!

[µ] confirm?

[⊤] leave!

u1 : User

0 2

1[µ] join!

[b] join!

[µ] confirm?

[⊤] leave!

u2 : User

0 1[b] join? [⊤] leave?

[µ] join?

[µ] confirm!

s : Server

fst({µ}, join) = ([1, 1], [1, 1]) fst({b}, join) = ([1, ∗], [1, 1])

At state (0, 0, 0):

[

µ ∨ b ∧ fm

] rcp({u1}, join) ∧ [

fm

] rcp({u2}, join) ∧ [

µ ∨ b ∧b ∧ ¬ µ ∧ fm

] rcp({u1, u2}, join)

Featured receptiveness requirements are constrained with feature expression by:

• local feature expressions: characterise products with enabled local transitions

• fst: characterise products with the correct number of senders
• reachable states: characterise products where the state is reachable

29 / 42



Building FETA Requirements for Communication Safety

Featured Receptiveness Requirements

fm = µ⊕b

0 2

1[µ] join!

[b] join!

[µ] confirm?

[⊤] leave!

u1 : User

0 2

1[µ] join!

[b] join!

[µ] confirm?

[⊤] leave!

u2 : User

0 1[b] join? [⊤] leave?

[µ] join?

[µ] confirm!

s : Server

fst({µ}, join) = ([1, 1], [1, 1]) fst({b}, join) = ([1, ∗], [1, 1])

At state (0, 0, 0):

[µ ∨ b

∧ fm

] rcp({u1}, join) ∧ [

fm

] rcp({u2}, join) ∧ [

µ ∨ b ∧b ∧ ¬ µ ∧ fm

] rcp({u1, u2}, join)

Featured receptiveness requirements are constrained with feature expression by:

• local feature expressions: characterise products with enabled local transitions

• fst: characterise products with the correct number of senders
• reachable states: characterise products where the state is reachable

30 / 42



Building FETA Requirements for Communication Safety

Featured Receptiveness Requirements

fm = µ⊕b

0 2

1[µ] join!

[b] join!

[µ] confirm?

[⊤] leave!

u1 : User

0 2

1[µ] join!

[b] join!

[µ] confirm?

[⊤] leave!

u2 : User

0 1[b] join? [⊤] leave?

[µ] join?

[µ] confirm!

s : Server

fst({µ}, join) = ([1, 1], [1, 1]) fst({b}, join) = ([1, ∗], [1, 1])

At state (0, 0, 0):

[µ ∨ b

∧ fm

] rcp({u1}, join) ∧ [

fm

] rcp({u2}, join) ∧ [

µ ∨ b ∧b ∧ ¬ µ ∧ fm

] rcp({u1, u2}, join)

Featured receptiveness requirements are constrained with feature expression by:

• local feature expressions: characterise products with enabled local transitions
• fst: characterise products with the correct number of senders

• reachable states: characterise products where the state is reachable

31 / 42



Building FETA Requirements for Communication Safety

Featured Receptiveness Requirements

fm = µ⊕b

0 2

1[µ] join!

[b] join!

[µ] confirm?

[⊤] leave!

u1 : User

0 2

1[µ] join!

[b] join!

[µ] confirm?

[⊤] leave!

u2 : User

0 1[b] join? [⊤] leave?

[µ] join?

[µ] confirm!

s : Server

fst({µ}, join) = ([1, 1], [1, 1]) fst({b}, join) = ([1, ∗], [1, 1])

At state (0, 0, 0):

[µ ∨ b ∧ fm] rcp({u1}, join) ∧ [

fm

] rcp({u2}, join) ∧ [

µ ∨ b ∧b ∧ ¬ µ ∧ fm

] rcp({u1, u2}, join)

Featured receptiveness requirements are constrained with feature expression by:

• local feature expressions: characterise products with enabled local transitions
• fst: characterise products with the correct number of senders

• reachable states: characterise products where the state is reachable

32 / 42



Building FETA Requirements for Communication Safety

Featured Receptiveness Requirements

fm = µ⊕b

0 2

1[µ] join!

[b] join!

[µ] confirm?

[⊤] leave!

u1 : User

0 2

1[µ] join!

[b] join!

[µ] confirm?

[⊤] leave!

u2 : User

0 1[b] join? [⊤] leave?

[µ] join?

[µ] confirm!

s : Server

fst({µ}, join) = ([1, 1], [1, 1]) fst({b}, join) = ([1, ∗], [1, 1])

At state (0, 0, 0):

[µ ∨ b ∧ fm] rcp({u1}, join) ∧ [

fm

] rcp({u2}, join) ∧ [

µ ∨ b ∧b ∧ ¬ µ ∧ fm

] rcp({u1, u2}, join)

Featured receptiveness requirements are constrained with feature expression by:

• local feature expressions: characterise products with enabled local transitions
• fst: characterise products with the correct number of senders
• reachable states: characterise products where the state is reachable

33 / 42



Building FETA Requirements for Communication Safety

Featured Receptiveness Requirements

fm = µ⊕b

0 2

1[µ] join!

[b] join!

[µ] confirm?

[⊤] leave!

u1 : User

0 2

1[µ] join!

[b] join!

[µ] confirm?

[⊤] leave!

u2 : User

0 1[b] join? [⊤] leave?

[µ] join?

[µ] confirm!

s : Server

fst({µ}, join) = ([1, 1], [1, 1]) fst({b}, join) = ([1, ∗], [1, 1])

At state (0, 0, 0):

[µ ∨ b ∧ fm] rcp({u1}, join) ∧ [fm] rcp({u2}, join) ∧ [µ ∨ b ∧b ∧ ¬ µ ∧ fm] rcp({u1, u2}, join)

Featured receptiveness requirements are constrained with feature expression by:

• local feature expressions: characterise products with enabled local transitions
• fst: characterise products with the correct number of senders
• reachable states: characterise products where the state is reachable

34 / 42



Compliance

Compliance with requirements

fm = µ⊕b

0 2

1[µ] join!

[b] join!

[µ] confirm?

[⊤] leave!

u1 : User

0 2

1[µ] join!

[b] join!

[µ] confirm?

[⊤] leave!

u2 : User

0 1[b] join? [⊤] leave?

[µ] join?

[µ] confirm!

s : Server

At state (0, 0, 0):

[fm] rcp({u1}, join) ∧ [fm] rcp({u2}, join) ∧ [b ∧ ¬ µ] rcp({u1, u2}, join)

{µ} : (0, 0, 0)
[µ∧fm] ({u1},join,{s})−−−−−−−−−−−−−→fst[S](1, 0, 1)

{b} : (0, 0, 0)
[b∧fm] ({u1},join,{s})−−−−−−−−−−−−−→fst[S](2, 0, 0)

35 / 42



Compliance

Compliance with requirements

fm = µ⊕b

0 2

1

[µ] join!

[µ] join!

[b] join!

[µ] confirm?

[⊤] leave!

u1 : User

0 2

1

[µ] confirm?

[µ] confirm?[µ] join!

[b] join!

[⊤] leave!

u2 : User

0 1

[µ] join?

[µ] confirm!

[µ] join?

[µ] confirm!

[b] join? [⊤] leave?

s : Server

At state (0, 1, 1):

✗

[µ ∧ ¬b] rcp({u1}, join) ∧ . . .

{µ} : (0, 1, 1)
[µ∧fm]({s}, confirm,{u2})−−−−−−−−−−−−−−−→fst[S](0, 2, 0)

[µ∧fm]({u1}, join,{s})−−−−−−−−−−−−−→fst[S](1, 2, 1)

36 / 42



Compliance

Compliance with requirements

fm = µ⊕b

0 2

1

[µ] join!

[µ] join!

[b] join!

[µ] confirm?

[⊤] leave!

u1 : User

0 2

1

[µ] confirm?

[µ] confirm?[µ] join!

[b] join!

[⊤] leave!

u2 : User

0 1

[µ] join?

[µ] confirm!

[µ] join?

[µ] confirm!

[b] join? [⊤] leave?

s : Server

At state (0, 1, 1):

✗[µ ∧ ¬b] rcp({u1}, join) ∧ . . .

{µ} : (0, 1, 1)
[µ∧fm]({s}, confirm,{u2})−−−−−−−−−−−−−−−→fst[S](0, 2, 0)

[µ∧fm]({u1}, join,{s})−−−−−−−−−−−−−→fst[S](1, 2, 1)

37 / 42



Compliance

Weak compliance with requirements

fm = µ⊕b

0 2

1[µ] join!

[µ] join!

[b] join!

[µ] confirm?

[⊤] leave!

u1 : User

0 2

1 [µ] confirm?

[µ] confirm?

[µ] join!

[b] join!

[⊤] leave!

u2 : User

0 1

[µ] join?

[µ] confirm!

[µ] join?

[µ] confirm!

[b] join? [⊤] leave?

s : Server

At state (0, 1, 1):

✗

[µ ∧ ¬b] rcp({u1}, join) ∧ . . .

{µ} : (0, 1, 1)
[µ∧fm]({s}, confirm,{u2})−−−−−−−−−−−−−−−→fst[S](0, 2, 0)

[µ∧fm]({u1}, join,{s})−−−−−−−−−−−−−→fst[S](1, 2, 1)

38 / 42



Tool

Online prototype

• Specify

• Generate∗

• Visualise

• Statistics

∗SAT solver to solve fm

39 / 42



Wrap up

Wrapping up

0 2

1[µ] join!

[b] join!

[µ] confirm?

[⊤] leave!

u1 : User

0 2

1[µ] join!

[b] join!

[µ] confirm?

[⊤] leave!

fm = µ⊕b

u2 : User

0 1

[b
]
join

?

[⊤] leave?

[µ] join?

[µ] confirm!

s : Server

0 2
join!

leave!

u1 : User⇂b

0 2
join!

leave!

u2 : User⇂b

0

join?

leave?

s : Server⇂b

0, 0, 0 2, 0, 0· · · · · ·

[γ1 ] {}, join, {s}

[γ2 ] {u1}, join, {s}

fm = µ⊕b

[γ3 ] rcp({u1}, join)
[γ4 ] rcp({u2}, join)
[γ5 ] rcp({u1, u2}, join)

0, 0, 0 2, 0, 0· · · · · ·
{u1}, join, {s}

rcp({u1}, join)
rcp({u2}, join)
rcp({u1, u2}, join)

featured
(weakly)
receptive

(weakly)
receptive

Main
Theorem

fst({b}, join) = ([1, ∗], [1, 1])
fst({b}, leave)= ([1, ∗], [1, 1])
. . .

−→ = −→
(diagram commutes)

ICTAC’20:

FM’21:

st(join) = ([1, ∗], [1, 1])
st(leave)= ([1, ∗], [1, 1])
. . .

⇂b
⇂b⇂b

Featured
Systems

Systems

Featured
Teams

Teams

Featured
Receptiveness

Receptiveness

Featured
Synchronisation Types

Synchronisation Types

Online prototype: http://arcatools.org/feta

Extentions (e.g. FM’23: generate requirements as
PDL formulae and check compliance with mCRL2

Featured
Responsiveness

Smarter: which
configurations derived

compliant teams?
Compositionality

40 / 42

http://arcatools.org/feta


Wrap up

Future and ongoing work

0 2

1[µ] join!

[b] join!

[µ] confirm?

[⊤] leave!

u1 : User

0 2

1[µ] join!

[b] join!

[µ] confirm?

[⊤] leave!

fm = µ⊕b

u2 : User

0 1

[b
]
join

?

[⊤] leave?

[µ] join?

[µ] confirm!

s : Server

0 2
join!

leave!

u1 : User⇂b

0 2
join!

leave!

u2 : User⇂b

0

join?

leave?

s : Server⇂b

0, 0, 0 2, 0, 0· · · · · ·

[γ1 ] {}, join, {s}

[γ2 ] {u1}, join, {s}

fm = µ⊕b

[γ3 ] rcp({u1}, join)
[γ4 ] rcp({u2}, join)
[γ5 ] rcp({u1, u2}, join)

0, 0, 0 2, 0, 0· · · · · ·
{u1}, join, {s}

rcp({u1}, join)
rcp({u2}, join)
rcp({u1, u2}, join)

featured
(weakly)
receptive

(weakly)
receptive

Main
Theorem

fst({b}, join) = ([1, ∗], [1, 1])
fst({b}, leave)= ([1, ∗], [1, 1])
. . .

−→ = −→
(diagram commutes)

ICTAC’20:

FM’21:

st(join) = ([1, ∗], [1, 1])
st(leave)= ([1, ∗], [1, 1])
. . .

⇂b
⇂b⇂b

Featured
Systems

Systems

Featured
Teams

Teams

Featured
Receptiveness

Receptiveness

Featured
Synchronisation Types

Synchronisation Types

Online prototype: http://arcatools.org/feta Extentions (e.g. FM’23: generate requirements as
PDL formulae and check compliance with mCRL2

Featured
Responsiveness

Smarter: which
configurations derived

compliant teams?
Compositionality

41 / 42

http://arcatools.org/feta


Wrap up

Thank you for your attention!
Questions?

42 / 42


	Settings
	Overview
	Building FETA
	Transitions
	Requirements for Communication Safety

	Compliance
	Tool
	Wrap up

