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Settings

Background

Team Automata:1

• Systems of communicating components: synchronise over shared actions

• Synchronisation types per action:2 peer-2-peer, broadcast, . . .
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Goal: safe communication3 – no message loss, no indefinite waiting, . . .

1ter Beek, Team Automata. Ph.D. thesis, Leiden University, 2003
2ter Beek, Ellis, Kleijn & Rozenberg, Synchronizations in team automata for groupware systems. Comput. Sup. Coop. Work 12, 2003
3ter Beek, Hennicker & Kleijn, Compositionality of Safe Communication in Systems of Team Automata. ICTAC 2020
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Settings

Motivation

Many systems today are highly configurable (in terms of features):4

• Large sets of similar systems that share a lot of behaviour but differ in other

configuration n

. . .

configuration 2

configuration 1
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Challenge: system-by-system analysis of safe communication quickly becomes unfeasible

4Classen, Cordy, Schobbens, Heymans, Legay & Raskin, Featured Transition Systems: Foundations for Verifying Variability-
Intensive Systems and Their Application to LTL Model Checking. IEEE Trans. Softw. Eng. 39, 2013
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Settings

Approach

Featured Team Automata:5

• Families (sets) of Team Automata model as a Software Product Line

• Single model parametrised by features (e.g.: µ, b), and a feature model (µ⊕b)
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Goal: family-based analysis of safe communication

5ter Beek, Cledou, Hennicker & Proença, Featured Team Automata. FM 2021
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Overview

Team Automata
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[γ1 ] {}, join, {s}
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fm = µ⊕b

[γ3 ] rcp({u1}, join)
[γ4 ] rcp({u2}, join)
[γ5 ] rcp({u1, u2}, join)

0, 0, 0

0, 0, 0

2, 0, 0· · · · · ·
{u1}, join, {s}

rcp({u1}, join)
rcp({u2}, join)
rcp({u1, u2}, join)

featured
(weakly)
receptive

(weakly)
receptive

Main
Theorem

fst({b}, join) = ([1, ∗], [1, 1])
fst({b}, leave)= ([1, ∗], [1, 1])
. . .

−→ = −→
(diagram commutes)

ICTAC’20:

FM’21:

st(join) = ([1, ∗], [1, 1])
st(leave)= ([1, ∗], [1, 1])
. . .

⇂b
⇂b⇂b

Featured
Systems

Systems

Featured
Teams

Teams

Featured
Receptiveness

Receptiveness

Featured
Synchronisation Types

Synchronisation Types

(0, 0, 0)
({u1}, join,{s})−−−−−−−−−→ (2, 0, 0)(0, 0, 0)

({u1,u2}, join,{s})−−−−−−−−−−−→ (2, 2, 0)(0, 0, 0)
({}, join,{s})−−−−−−−→ (0, 0, 0)

might not be desirable
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Transitions are constrained with feature expressions by:

• local feature expressions: characterise the products with all local transitions present

• fst: characterise the products that satisfy the corresponding synchronisation type

fst({µ}, join) = ([1, 1], [1, 1]) fst({b}, join) = ([1, ∗], [1, 1])

(0, 0, 0)
[

b∧b∧b∧b∧¬ µ

]({u1,u2}, join,{s})−−−−−−−−−−−−−−−−−−−−−→fst[S] (2, 2, 0)
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] rcp({u1}, join) ∧ [
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] rcp({u2}, join) ∧ [

µ ∨ b ∧b ∧ ¬ µ ∧ fm

] rcp({u1, u2}, join)

Featured receptiveness requirements are constrained with feature expression by:

• local feature expressions: characterise products with enabled local transitions
• fst: characterise products with the correct number of senders
• reachable states: characterise products where the state is reachable
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Featured receptiveness requirements are constrained with feature expression by:

• local feature expressions: characterise products with enabled local transitions
• fst: characterise products with the correct number of senders
• reachable states: characterise products where the state is reachable
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Compliance

Compliance with requirements
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[fm] rcp({u1}, join) ∧ [fm] rcp({u2}, join) ∧ [b ∧ ¬ µ] rcp({u1, u2}, join)

{µ} : (0, 0, 0)
[µ∧fm] ({u1},join,{s})−−−−−−−−−−−−−→fst[S](1, 0, 1)

{b} : (0, 0, 0)
[b∧fm] ({u1},join,{s})−−−−−−−−−−−−−→fst[S](2, 0, 0)
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Compliance
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Tool

Online prototype

• Specify

• Generate∗

• Visualise

• Statistics

∗SAT solver to solve fm

39 / 42



Wrap up

Wrapping up
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Wrap up

Future and ongoing work

0 2

1[µ] join!

[b] join!

[µ] confirm?

[⊤] leave!

u1 : User

0 2

1[µ] join!

[b] join!

[µ] confirm?

[⊤] leave!

fm = µ⊕b

u2 : User

0 1

[b
]
join

?

[⊤] leave?

[µ] join?

[µ] confirm!

s : Server

0 2
join!

leave!

u1 : User⇂b

0 2
join!

leave!

u2 : User⇂b

0

join?

leave?

s : Server⇂b

0, 0, 0 2, 0, 0· · · · · ·

[γ1 ] {}, join, {s}

[γ2 ] {u1}, join, {s}

fm = µ⊕b

[γ3 ] rcp({u1}, join)
[γ4 ] rcp({u2}, join)
[γ5 ] rcp({u1, u2}, join)

0, 0, 0 2, 0, 0· · · · · ·
{u1}, join, {s}

rcp({u1}, join)
rcp({u2}, join)
rcp({u1, u2}, join)

featured
(weakly)
receptive

(weakly)
receptive

Main
Theorem

fst({b}, join) = ([1, ∗], [1, 1])
fst({b}, leave)= ([1, ∗], [1, 1])
. . .

−→ = −→
(diagram commutes)

ICTAC’20:

FM’21:

st(join) = ([1, ∗], [1, 1])
st(leave)= ([1, ∗], [1, 1])
. . .

⇂b
⇂b⇂b

Featured
Systems

Systems

Featured
Teams

Teams

Featured
Receptiveness

Receptiveness

Featured
Synchronisation Types

Synchronisation Types

Online prototype: http://arcatools.org/feta Extentions (e.g. FM’23: generate requirements as
PDL formulae and check compliance with mCRL2

Featured
Responsiveness

Smarter: which
configurations derived

compliant teams?
Compositionality

41 / 42

http://arcatools.org/feta


Wrap up

Thank you for your attention!
Questions?
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