T-LADIES

TYPEFUL LANGUAGE ADAPTATION FOR
[YHAMIC, [NTERACTING AND EVOLVING §YSTEMS

/ (Jgj“e\y

7::\:;:1
¢

Featured Team Automata

Maurice H. ter Beek! Guillermina Cledou? Rolf Hennicker® José Proenca*

1ISTI-CNR, Pisa, ltaly
2HASLab, INESC TEC & University of Minho, Portugal
3Ludwig—Maximi|ians-Universit5t Miinchen, Munich, Germany

4CISTER, ISEP, Polytechnic Institute of Porto, Portugal

T-LADIES kick-off, 67 July 2022 1/42

Background

Team Automata:!

e Systems of communicating components: synchronise over shared actions

e Synchronisation types per action:? peer-2-peer, broadcast,

Jjoin?
/ea vel /ea ve! leave?

3

Goal: safe communication® — no message loss, no indefinite waiting,

1ter Beek, Team Automata. Ph.D. thesis, Leiden University, 2003
2ter Beek, Ellis, Kleijn & Rozenberg, Synchronizations in team automata for groupware systems. Comput. Sup. Coop. Work 12, 2003

3ter Beek, Hennicker & Kleijn, Compositionality of Safe Communication in Systems of Team Automata. ICTAC 2020
2/42

Motivation

Many systems today are highly configurable (in terms of features):*

® |arge sets of similar systems that share a lot of behaviour but differ in other

configuration n

configuration 2

configuration 1

Jjoin?
Q= QD A

leave! leave! leave?

Challenge: system-by-system analysis of safe communication quickly becomes unfeasible

4'Classen, Cordy, Schobbens, Heymans, Legay & Raskin, Featured Transition Systems: Foundations for Verifying Variability-
Intensive Systems and Their Application to LTL Model Checking. |EEE Trans. Softw. Eng. 39, 2013

3/42

Approach

Featured Team Automata:®

® Families (sets) of Team Automata model as a Software Product Line

¢ Single model parametrised by features (e.g.: &, o), and a feature model (& @ o)

fm=Qad«
[@] join! [@] confirm? [&] join! [8] confirm? (@] join?
qoS e o . ‘°®°
[T] leave! [T] leave! [a] confirm!

Goal: family-based analysis of safe communication

5ter Beek, Cledou, Hennicker & Proenca, Featured Team Automata. FM 2021
4/42

Overview

Team Automata

Join?
ICTAC'20: R D R 2
leave! leave! leave?
uy : User uz : User s : Server

Systems

5/42

Overview

Team Automata

Join?

ICTAC'20:

)

leave!

leave! leave?
ur : User uz ; User s Server
Systems
({uz},join{s})

(0,0,0) “2ED, (5 0, 0)

6/42

Overview

Team Automata

Jjoin?

@D O

\cTAC 0 9
leave! leave! leave?

uy : User uz : User s : Server

Systems

(0,0, 0) {Lenadion{sh, (5 5 gy

7/42

Overview

Team Automata

Join?
QD QD
ICTAC'20: R D Kot D)
leave! leave! leave?

uy : User uz : User s : Server

Systems

(0,0,0) B2, 4 g)

might not be desirable 8/42

Overview

Team Automata

crac | TG D Q=0

leave! leave!
uy : User uz ; User
Systems

Join?

leave?

s : Server

st(join) = ([1,4].[1,1])
st(leave) = ([1,#], [1,1])

Synchronisation Types

9/42

Overview

Team Automata

Join?
ICTAC'20: R D R 2
leave! leave! leave?
uy : User uz : User s : Server

Systems

st(join) = ([1,4].[1,1])
st(leave) = ([1,#], [1,1])

Synchronisation Types

{wn).join, {5}

Teams

>

10/ 42

Overview

Team Automata

Join? st(oin) = (1L,], [1,1]))
@ © @ © _@ st(leave) = ([1,+].[1.1]) P
us},join, {5
ICTAC'20: o D o D ¢ > mnmanns L)
leave! leave! leave?
ur : User uz : User s Server
Systems Synchronisation Types Teams Receptiveness

11/42

Overview

Team Automata

Join? st(join) = (1, <], [L, 1]2

@ st(leave) = ([1,+],[1,1]
ICTAC'20: owe o m e

{un}. join, {s} (wesy)
3 CAAAAAAND> Y.
DT E receptive
leave! leave! leave? :
rep({us}. join)
uy : User uz : User

s : Server rep({u2}, join)
! : 1ep({un, ua}, join)
Systems Synchronisation Types

Teams Receptiveness

12/42

Overview

Featured Team Automata

Featured
Systems
fm=aod
] Join! 8] confirm? [@] join! 8] confirm? 8] join?
- s
S Heiiye
2
[T] leavel [T] leave! (8] confirm!
u : User us ¢ User 5 Server

join? st(join) = ([1,+],[1,1])
st(leave) = ([1, 4], [1,1])

{w}, join, {s}
crac | TG D Q=0 ‘@ < s s ()

leave! leave! leave?

ur : User| ¢ uz : User| s Serverl o V:p“m‘y jc;m)‘)
; * rep({us, 2} join)

Systems Synchronisation Types Teams Receptiveness

13/42

Featured Team Automata

Featured
Systems

fm=A0d

[a] join!

8] confirm? [@] join! [a] confirm?

FM21:
[T] leave! [T] feave!
uy : User u @ User
ltm
ICTAC'20: R D R 2
leave! leave!
uy : User|; 1y« User|s
Systems

urof [s]
S

Overview

@] join?

5ip

&] confirm!

s : Server

Join?

leave?

s Server|;

st(join) = ([1,4].[1,1])
st(leave) = ([1,#], [1,1])

<

{wn).join, {5}

(weakly)
3 CAAAAAANAD>
> receptive

rep({u2}, join)

- rep({u, u2}, join)

Synchronisation Types

Receptiveness

14/ 42

Overview

Featured Team Automata

[a] join! @] confirm?

-
Rl

FM'21:

[T] leave!

uy @ User

K

leave!

ICTAC'20:

u : User|

@] join!

Featured
Systems

fm=A0d

[a] confirm?

surof]
0
)

[T] leave!
uz : User s Server
ltm
Join?
leave! leave?
uz : User| o s Server|,
Systems

@] join?

&] confirm!

Featured
Synchronisation Types

fst({«}, join) 1,4, [1,
fot({«}, leave) = ([1, 4], [1,

st(join) = ([1,%],[1,1])
st(leave) = ([1, 4], [1,1])
{un},join, {s}

rep({u2}, join)
- rep({u, u2}, join)

Synchronisation Types

‘

N (weakly)
CAAAAAANAD>
receptive

Receptiveness

15/ 42

Overview

Featured Team Automata

Featured
Systems

fm=A0d

[a] confirm?

[a] join!

8] confirm? [a] join!

[T] leave! [T] feave!
uy : User u @ User
ltm
ICTAC'20; R D R 2
leave! leave!
uy : User|; up : User| o
Systems

Featured
Synchronisation Types

@] join?

fst({«}, join) 1,4, [1,
fot({«}, leave) = ([1, 4], [1,

surof]
0
)

1
1

&] confirm!

s : Server
[y
Join? st(join) = ([1,+],[1,1])
st(leave) = ([1,+],[1,1])
{un},join, {s}
<
leave? .
rep({u1}.join)
s Server|; rep({uz}join)

" rep({us, u2}, join)

Synchronisation Types

N (weakly)

receptive

Receptiveness

16/ 42

Overview

Featured Team Automata

Featured Featured Featured
Systems Synchronisation Types Teams
fm=acd
fm=aod
18] joint 8] confirm? [@] join! 8] confirm? 8] join? " }["](“)”"5’
— 2] s}, join, {5
> > >
FM'21: ‘ 5 fst({«}, join) = ([1,%],(1,1])
‘03 (D fst({], leave) = ([1, 4], [1,1])
[T] leavel [T] leave! (8] confirm!
u : User us ¢ User 5 Server
. [y
ltm
Join? iy
st(join) = ([1,+],[1,1])

st(leave) = ([1, 4], [1,1])
{n} join, {s}

crac | TG D Q=0 "@ AT > A)

leave! leave! leave? :
rep({un }, join)
ur : User| ¢ uz : User| o s Server|, rep({u2 1 join)
; 2 rep({un, ua}join)
Systems Synchronisation Types Teams

Receptiveness

17/ 42

Overview

Featured Team Automata

Featured
Systems

fm=A0d

[&] join! 8] confirm? [@] join! [a] confirm?
. s
FM'21: 5
3
[T] leave! [T] leave!
uy : User uz : User
ltm
ICTAC'20: N, Ko 2
leave! leave!
uy : User| 4 uz : User| o
Systems

@] join?

(Jo)

&] confirm!

s : Server

Join?

Featured Featured Featured
Synchronisation Types Teams Receptiveness
fm=and
[ra] {}Join, {s}
[2] {us}, join. featured
— T ! > AnAnAnnnS> (weakly)
fst({«}, join) = ([1,],[1,1]) receptive

fot({}, leave) = ([1, 4], [1,1])

[y

st(join) = ([1,%],[1,1])
st(leave) = ([1, 4], [1,1])
{un},join, {s}

¢ > nnmanns 1)

leave?

s Server|;

receptive

rep({u2}, join)
" rep({u1, u2}. join)

Synchronisation Types Receptiveness

18/ 42

Overview

Featured Team Automata

Featured
Systems

fm=A0d

[&] join! 8] confirm? [@] join! [a] confirm?
. s
FM'21: 5
3
[T] leave! [T] leave!
uy : User uz : User
ltm
ICTAC'20: N, Ko 2
leave! leave!
uy : User| 4 uz : User| o
Systems

@] join?

(Jo)

&] confirm!

s : Server

Join?

Featured Featured Featured
Synchronisation Types Teams Receptiveness
fm=and

[e] rep({u2}, join)
[s] res uz}, join)

[£} Join, {s}

featured
— o oo > AnAAnAn> (weakly)
fst({«}, join) = ([1,+],[1,1]) receptive

fot({}, leave) = ([1, 4], [1,1])

[y

st(join) = ([1,%],[1,1])
st(leave) = ([1, 4], [1,1])
{un},join, {s}

¢ > nnmanns 1)

leave?

s Server|;

receptive

rep({u2}, join)
" rep({u1, u2}. join)

Synchronisation Types Receptiveness

19/42

Overview

Featured Team Automata

Featured
Systems

fm=A0d

@] join?

Featured
Synchronisation Types

Featured
Teams

[e] rep({u2}, join)

belre

_— >
fst({«}, join) = ([1,],[1,1])
fst({} leave) = ([1,+], [1,1])

[y

st(join) = ([1,4].[1,1])
st(leave) = ([1,#], [1,1])

[a] join! 8] confirm? [a] join! @] confirm?
. s
P2t T @Y mmeaD
3
[T] leave! [T] leave! 8] confirm!
uy : User uz : User s Server
ltm
Join?
ICTAC'20: N, R 2
leave! leave! leave?
ur : User| ¢ uz : User| o s Server|,
Systems

Synchronisation Types

<

uz}, join)

[£} Join, {s}

{wn).join, {5}

rep({u2}, join)

" rep({us, u2}, join)

Featured
Receptiveness

featured

3 A~~~ (weakly)

receptive

N (weakly)

receptive

Receptiveness

20/ 42

Overview

Featured Team Automata

Featured
Systems

fm=A0d

8] confirm? [@] join! [a] confirm?

[a] join!

o
FM"21: {"l.b S
W S
[T] leave! [T] leave!
uy : User s : User
ll.r
ICTAC'20: w W
leave! leave!
uy : User| 4 uz : User| o
Systems

@] join?

(Jo)

&] confirm!

s : Server

Join?

Featured
Synchronisation Types

Featured Featured
Teams Receptiveness
fm=and

[e] rep({u2}, join)

[7s] rep({u1, u2}, join)

—_—
fst({«}, join) = ([1,#],[1,1])

fot({}, leave) = ([1, 4], [1,1])

[y

st(join) = ([1,+],[1,1])
st(leave) = ([1,+],[1,1])

leave?

s Server|;

y =

(diagram commutes)

Synchronisation Types

<

Ll

[{}.Join, {5}
() Join. (s} () featured
(0.0.0) > AAAAAAnS> (weakly)
receptive
lap
{ur}, join, {s} (weakly)
Y,
PN e

rep({u2}, join)

Teams Receptiveness

21/42

Overview

Featured Team Automata

&] confirm?

-
Rl

[a] join!

FM2L:
[T] leave!
uy : User
ICTAC'20: Gwe
leave!
uy : User|;

Online prototype:

Featured
Systems

fm=A0d

8] Join! 8] confirm? 8] join?

uiof [gm]
S
)

Featured
Synchronisation Types

[e] rep({u2}, join)
[s] rep({us, u2}

w}.join, {5} () featured
(0.0.0) > AAAAAAnS> (weakly)

fst({«}, join) = ([1,%],[1,1]
fst({}, leave) = ([1,#],[1,1])

[y

st(join) = ([1,+],[1,1])
st(leave) = ([1,+],[1,1])

[T] leave! [8] confirm!
uz : User s Server
ll.r
Join?
leave! leave?
uz : User| o s Server|,
Systems

http://arcatools.org/feta

y =

(diagram commutes)

Synchronisation Types

<

Featured
Teams

join)

[£} Join, {s}

{wn).join, {5}

rep({u2}, join)

- rep({u, u2}, join)

Featured
Receptiveness

receptive

N (weakly)

receptive

Receptiveness

22/42

http://arcatools.org/feta

Overview

Featured Team Automata

Featured
Systems

fm=A0d

[a] confirm?

8] confirm? [a] join!

[a] join!

[T] leave! [T] leave!
uy : User u @ User
ll.r
ICTAC'20: R D R 2
leave! leave!
1+ User|; s : User|
Systems

Online prototype:

@] join?

surof]
0
)

&] confirm!

s : Server

Join?

Featured
Synchronisation Types

[e] rep({u2}, join)
[s] rep({us, u2}

w}.join, {5} () featured
(0.0.0) > AAAAAAnS> (weakly)

—_— 5
fst({«}, join) = ([1,], [1, 1})

fot({}, leave) = ([1, 4], [1,1])

[y

st(join) = ([1,+],[1,1])
st(leave) = ([1,+],[1,1])

leave?

s Server|;

http://arcatools.org/feta

s =
(diagram commutes)

Synchronisation Types

<

Featured
Teams

join)

[£} Join, {s}

{wn).join, {5}

rep({u2}, join)

- rep({u, u2}, join)

Featured
Receptiveness

receptive

Main
Theorem

N (weakly)

receptive

Receptiveness

23/42

http://arcatools.org/feta

SICI-AS VAN Transitions

Featured Team Automata Transitions

fm=ao«

[&] join! [&] confirm? [@] join! [8] confirm? [&] join?

() o C@@g
[T] leave! [T] leave! [8] confirm!
uy : User up : User s : Server

Transitions are constrained with feature expressions by:
® |ocal feature expressions: characterise the products with all local transitions present
e fst: characterise the products that satisfy the corresponding synchronisation type
fst({@a}, join) = ([1,1],[1,1]) fst({a},join) = ([1, %], [1, 1])

]({u17u2}7j0in7{5})

[
(07050) fst[S] (27270)

24 /42

SICI-AS VAN Transitions

Featured Team Automata Transitions

fm=ao«

[&] join! [&] confirm? [@] join! [8] confirm? [&] join?

() o C@@g
[T] leave! [T] leave! [8] confirm!
uy : User up : User s : Server

Transitions are constrained with feature expressions by:
® |ocal feature expressions: characterise the products with all local transitions present

e fst: characterise the products that satisfy the corresponding synchronisation type

fst({8},join) = ([1.1].[1,1]) fst({s}, join) = ({1, #]. [1. 1]

(AN 1({u1,u2}, join,{s})

(07050) fst[S] (27270)

25 /42

SICI-AS VAN Transitions

Featured Team Automata Transitions

fm=ao«

[&] join! [&] confirm? [@] join! [8] confirm? [&] join?

() o C@@g
[T] leave! [T] leave! [8] confirm!
uy : User up : User s : Server

Transitions are constrained with feature expressions by:
® |ocal feature expressions: characterise the products with all local transitions present

e fst: characterise the products that satisfy the corresponding synchronisation type

fst({8},join) = ([1.1].[1,1]) fst({s}, join) = ({1, #]. [1. 1]

[wAPASNARNA—B]({u1,u2}, join,{s})

(07050) fst[S] (27270)

26 /42

EICIT-AS VAN Requirements for Communication Safety

Featured Receptiveness Requirements

fm=Qa¢«

[&] join! [&] confirm? [&] join! [8] confirm? [&] join?

() join? ‘o@g
[T] leavel [T] leave! [8] confirm!
uy : User uz : User s : Server

fst({a},join) = ([1,1],[1,1]) fst({a}, join) = ([1,], [1,1])
At state (0,0,0):

[] rep({un},join) A [] rep({ua}, join) A] rep({u1; U2}, join)

27 /42

EICIT-AS VAN Requirements for Communication Safety

Featured Receptiveness Requirements

fm=Qa¢«

[&] join! [&] confirm? [&] join! [8] confirm? [&] join?

() join? ‘o@g
[T] leavel [T] leave! [8] confirm!
uy : User uz : User s : Server

fst({a},join) = ([1,1],[1,1]) fst({a}, join) = ([1,], [1,1])
At state (0,0,0):

[] rep({un},join) A [] rep({ua}, join) A] rep({u1; U2}, join)

Featured receptiveness requirements are constrained with feature expression by:

28 /42

EICIT-AS VAN Requirements for Communication Safety

Featured Receptiveness Requirements

fm=Qa¢«

[&] join! [&] confirm? [&] join! [8] confirm? [&] join?

() join? ‘o@g
[T] leavel [T] leave! [8] confirm!
uy : User uz : User s : Server

fst({a},join) = ([1,1],[1,1]) fst({a}, join) = ([1,], [1,1])
At state (0,0,0):

[1 rep({u1},join) A [] rep({ua},join) A] rep({ur, w2}, join)
Featured receptiveness requirements are constrained with feature expression by:

® |ocal feature expressions: characterise products with enabled local transitions

29 /42

EICIT-AS VAN Requirements for Communication Safety

Featured Receptiveness Requirements

fm=Qa¢«

[&] join! [&] confirm? [&] join! [8] confirm? [&] join?

() join? ‘o@g
[T] leavel [T] leave! [8] confirm!
uy : User uz : User s : Server

fst({a},join) = ([1,1],[1,1]) fst({a}, join) = ([1,], [1,1])
At state (0,0,0):

@V«] rep({ua},join) A [] rep({uz},join) A [| rep({u1, uz}, join)
Featured receptiveness requirements are constrained with feature expression by:

® |ocal feature expressions: characterise products with enabled local transitions

30/ 42

EICIT-AS VAN Requirements for Communication Safety

Featured Receptiveness Requirements

fm=Qa¢«

[&] join! [&] confirm? [&] join! [8] confirm? [&] join?

() join? ‘o@g
[T] leavel [T] leave! [8] confirm!
uy : User uz : User s : Server

fst({a},join) = ([L.1].[L1]) fst({s}, join) = ([L, 4], [L. 1]
At state (0,0,0):

@V Jrep({ur},join) A []rep({uz},join) A [] rep({u1, w2}, join)
Featured receptiveness requirements are constrained with feature expression by:

® |ocal feature expressions: characterise products with enabled local transitions
e fst: characterise products with the correct number of senders

31/42

EICIT-AS VAN Requirements for Communication Safety

Featured Receptiveness Requirements

fm=Qa¢«

[&] join! [&] confirm? [&] join! [8] confirm? [&] join?

() join? ‘o@g
[T] leavel [T] leave! [8] confirm!
uy : User uz : User s : Server

fst({a},join) = ([L.1].[L1]) fst({s}, join) = ([L, 4], [L. 1]
At state (0,0,0):

@V & A fm] rep({ur},join) A [] rep({uz},join) A [] rep({u1, w2}, join)
Featured receptiveness requirements are constrained with feature expression by:

® |ocal feature expressions: characterise products with enabled local transitions
e fst: characterise products with the correct number of senders

32/42

EICIT-AS VAN Requirements for Communication Safety

Featured Receptiveness Requirements

fm=Qa¢«

[&] join! [&] confirm? [&] join! [8] confirm? [&] join?

() join? ‘Q®Q
[T] leavel [T] leave! [8] confirm!
uy : User uz : User s : Server

fst({a},join) = ([L.1].[L1]) fst({s}, join) = ([L, 4], [L. 1]
At state (0,0,0):

@V & A fm] rep({ur},join) A [] rep({uz},join) A [] rep({u1, w2}, join)
Featured receptiveness requirements are constrained with feature expression by:

® |ocal feature expressions: characterise products with enabled local transitions
e fst: characterise products with the correct number of senders

® reachable states: characterise products where the state is reachable 1342

EICIT-AS VAN Requirements for Communication Safety

Featured Receptiveness Requirements

fm=Qa¢«

[&] join! [&] confirm? [&] join! [8] confirm? [&] join?

() join? ‘o@g
[T] leavel [T] leave! [8] confirm!
uy : User uz : User s : Server

fst({a},join) = ([L.1].[L1]) fst({s}, join) = ([L, 4], [L. 1]
At state (0,0,0):

[@V & A fm] rep({u1},join) A [fm] rep({ua}, join) A [V & Asd A @A fm] rep({uy, s}, join)
Featured receptiveness requirements are constrained with feature expression by:

® |ocal feature expressions: characterise products with enabled local transitions
e fst: characterise products with the correct number of senders

® reachable states: characterise products where the state is reachable 2e /a2

Compliance with requirements

fm=a@«
[&] join! a [&] confirm? [&] join! a [&] confirm? [&] join?
0. (<] join! (2) (6] join? 0@@
[T] leave! [T] leave! [8] confirm!
uy : User uy : User s : Server

At state (0,0,0):

[fm] rep({u1},join) A [fm] rep({u2},join) A [A —&] rep({u1, u2}, join)

{H} : (0) 07 0) il (e}joinds}) fst[S](17 07 1)
A fm] ({1} join,
{“} : (05 Oa O) [L (tefjoinds}) fst[S](27 O) 0)

35 /42

Compliance with requirements

fm=a¢«
[&] join! 6 [8] confirm? [&] join! o [8] confirm? [&] join?
Qo
[T] leave! [T] leave! [@] confirm!
uy : User uz : User s : Server

At state (0,1,1):

[@ A =] rep({ur},join) A

36 /42

Compliance with requirements

fm=a¢«
[&] join! 6 [8] confirm? [&] join! o [8] confirm? [&] join?
Qo
[T] leave! [T] leave! [@] confirm!
uy : User uz : User s : Server

At state (0,1,1):

X[@ A — o] rep({u1},join) A

37/42

Weak compliance with requirements

fm=a0«
[&] join! 6 [&] confirm? [&] join! o [8] confirm? [&] join?
e Qg f
[T] leave! [T] leave! [@] confirm!
uy : User uz : User s : Server

At state (0,1,1):

[@ A =] rep({ur},join) A

[@nfm]({s}, confirm,{u2})

) [anfm]({u1}, join,{s})

{ﬂ} : (07 L, 1) fst[S](07 2,0 fst[S](17 2, 1)

38/ 42

Online prototype

Specify
® Generate*

® Visualise

Statistics

*SAT solver to solve fm

BC Online Tocls for Festured Extr. X

O & arcatools.org/assets/feta htmi#oniinefeta o
FETA Development ‘Back to Arc
FETA Specification (2 FETA
I s, | g ek
P o gon s ‘ ‘
T2t e (O A Iy

5= 2 by Join if o N /
2= 0 by leave -~
3 o

T
(w102), e 1

FOA server (Join, Leave) (confirm) = {
o start o
1o o 1y join if 5

o
ya

1= 5 by confira if s N
6 — 5 by Join if .), e, 21
6= 5 by leave . g

¥

//

£ = (uimuser, u2-user, saserver)

s xon o u.".‘.(m.mm, P 0 o (01

walf 38 neEfl i
1RST = ¢ T)
defautt = one to ane // or 1.1 10 1 it e
{0} :3oin, Leave = many to one // or 1

FETA Examples FCA
() oo user server

FETA Information °

‘\“";”/’

1
stoleave) = 1.1

Copyrpt 2017-2021 ~ ARCA & umiebo.pt.

39/ 42

Wrap up

Wrapping up

[a] joint

&] confirm?

FM'21:
[T] leave!
uy : User
ICTAC'20: R D
leave!
ur : User| 4

Online prototype:

Featured
Systems

fm=A0d

8] confirm? 8] join?

@] join!

surof]
0
)

Featured

Synchronisation Types

fst({«}, join) = ([1,],[1,1;
fot({}, leave) = ([1, 4], [1,

[y

st(join) = ([1,+]

[1,1])
st(leave) = ([1,+], [1,1])

1
1)

Featured Featured
Teams Receptiveness
fm=acd

[74] rep({u2}. join)
[s] rep({us, vz}, join)

[1] £} Join, {s}
w}.join, {s} () featured
< %0,0,0) > AAAAAAnS> (weakly)
) receptive
Main
l“ Theorem
)}, join, {5
{wn}.join, {s} wenky)
< ¥ AAMAAAAAS !
receptive

[T] leave! [8] confirm!
uz : User s Server
lu
Join?
leave! leave?
uz : User| o s Server|,
Systems

http://arcatools.org/feta

=

(diagram commutes)

Synchronisation Types

ep({us},join)
* rep({us, 2}, join)

Receptiveness

40/ 42

http://arcatools.org/feta

Wrap up

Future and ongoing work

[a] joint

&] confirm?

-
Rl

FM'21:

[T] leave!

uy @ User

ctac | TG D

leave!

u : User|

Online prototype:

Featured
Systems

fm=A0d

Featured Featured Featured
Synchronisation Types.. T Teams Receptiveness "
- fm—aoe Smarter: which

S i configurations derived
Compositionality (] rcp({ua}.join)
lj

5] rep({us, u2). join) compliant teams?

(8] Joint (6] confirm? 8] join? bl {1, join, 1}
5 featured
L) A~~~ (weakly)
s fst({«}, join) = ([1,],[1,1]) ti
‘03 (D fst({} . Jeave) = (1, +], [1,1]) e
[T] feave! @] confirm!
uz : User s Server .
I I Featured Main
lhﬂ* Responsiveness ~ [[™r"
Join? L
st(join) = ([1,%],[1,1])
st(leave) = ([1, 4], [1,1])
o e {un}, join, {s} o)
weakly
leave! leave? N L
(diagram commutes) rep({wn }, join)
uz : User| o s : Server| o rep({u2 }. join)
Fral{an o) Jon)
Systems Synchronisation Types Teams Receptiveness

http://arcatools.org/feta ¢

Extentions (e.g. FM'23: generate requirements as
PDL formulae and check compliance with mCRL2

41/42

http://arcatools.org/feta

Thank you for your attention!
Questions?

=IFMIT

Formal Methods and Tools Lab

42/42

	Settings
	Overview
	Building FETA
	Transitions
	Requirements for Communication Safety

	Compliance
	Tool
	Wrap up

