Global Types for Asynchronous Multiparty Sessions

Paola Giannini

DiSSTE, Università del Piemonte Orientale

joint work with

Ilaria Castellani & Francesco Dagnino & Mariangiola Dezani

Kickoff T-Ladies, Pisa, 6-7 July, 2022

From the project's description

T3.1: Behavioral types of entities

We will develop type theories to specify and verify properties of dynamic systems, as in IoT, characterized by a high number of heterogeneous entities with possibly both synchronous (e.g., clock synchronization protocols for real-time monitoring) and asynchronous interactions (e.g., publish/subscribe models in the context of IoT event-driven architectures).

T4.3: Global types

In this task we will investigate a top-down methodology for the development of IoT applications based on global types to ensure that the interactions among "things" satisfy a given property by design.

From the project's description

T3.1: Behavioral types of entities

We will develop type theories to specify and verify properties of dynamic systems, as in IoT, characterized by a high number of heterogeneous entities with possibly both synchronous (e.g., clock synchronization protocols for real-time monitoring) and asynchronous interactions (e.g., publish/subscribe models in the context of IoT event-driven architectures).

T4.3: Global types

In this task we will investigate a top-down methodology for the development of IoT applications based on global types to ensure that the interactions among "things" satisfy a given property by design.

Index

1 Introduction to Multiparty Session Types

- 2 Asynchronous Global Types
- 3 Conclusions

- A multiparty session¹ is an interaction between participants exchanging messages according to a predefined protocol.
- The communication protocol is described by a global type, which specifies the overall behaviour of the system of interacting processes.
- The local behaviour for each participant, called session type, is algorithmically obtained as the projection of the global type.
- Session types can be used to
 - type-check the processes associated to participants (statically)
 - generate monitors to ensure that the processes behave according the the protocol specification (dynamically)

¹K. Honda, N. Yoshida, M. Carbone: Multiparty asynchronous session types, POPL, 2008.

- A multiparty session¹ is an interaction between participants exchanging messages according to a predefined protocol.
- The communication protocol is described by a global type, which specifies the overall behaviour of the system of interacting processes.
- The local behaviour for each participant, called session type, is algorithmically obtained as the projection of the global type.
- Session types can be used to
 - type-check the processes associated to participants (statically)
 - generate monitors to ensure that the processes behave according the the protocol specification (dynamically)

¹K. Honda, N. Yoshida, M. Carbone: Multiparty asynchronous session types, POPL, 2008.

- A multiparty session¹ is an interaction between participants exchanging messages according to a predefined protocol.
- The communication protocol is described by a global type, which specifies the overall behaviour of the system of interacting processes.
- The local behaviour for each participant, called session type, is algorithmically obtained as the projection of the global type.
- Session types can be used to
 - type-check the processes associated to participants (statically)
 - generate monitors to ensure that the processes behave according the the protocol specification (dynamically)

¹K. Honda, N. Yoshida, M. Carbone: Multiparty asynchronous session types, POPL, 2008.

- A multiparty session¹ is an interaction between participants exchanging messages according to a predefined protocol.
- The communication protocol is described by a global type, which specifies the overall behaviour of the system of interacting processes.
- The local behaviour for each participant, called session type, is algorithmically obtained as the projection of the global type.
- Session types can be used to
 - type-check the processes associated to participants (statically)
 - generate monitors to ensure that the processes behave according the the protocol specification (dynamically)

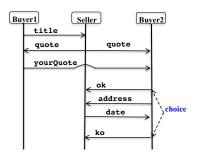
¹K. Honda, N. Yoshida, M. Carbone: Multiparty asynchronous session types, POPL, 2008.

- A multiparty session¹ is an interaction between participants exchanging messages according to a predefined protocol.
- The communication protocol is described by a global type, which specifies the overall behaviour of the system of interacting processes.
- The local behaviour for each participant, called session type, is algorithmically obtained as the projection of the global type.
- Session types can be used to
 - type-check the processes associated to participants (statically)
 - generate monitors to ensure that the processes behave according the the protocol specification (dynamically)

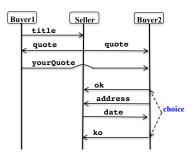
¹K. Honda, N. Yoshida, M. Carbone: Multiparty asynchronous session types, POPL, 2008.

- A multiparty session¹ is an interaction between participants exchanging messages according to a predefined protocol.
- The communication protocol is described by a global type, which specifies the overall behaviour of the system of interacting processes.
- The local behaviour for each participant, called session type, is algorithmically obtained as the projection of the global type.
- Session types can be used to
 - type-check the processes associated to participants (statically)
 - generate monitors to ensure that the processes behave according the the protocol specification (dynamically)

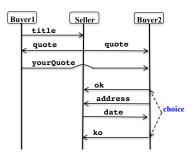
¹K. Honda, N. Yoshida, M. Carbone: Multiparty asynchronous session types, POPL, 2008.



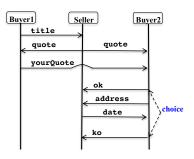
- Buyer1 sends a message to Seller with the title of the book she wants to buyer.
- Seller after receiving a title sends to both buyers a quote of the price
- Buyer1 computes how much she wants to pay and sends to Buyer2 the amount she should contribute, yourQuote
- Buyer2 using this information may decide



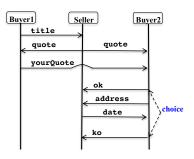
- Buyer1 sends a message to Seller with the title of the book she wants to buy
- Seller after receiving a title sends to both buyers a quote of the price
- Buyer1 computes how much she wants to pay and sends to Buyer2 the amount she should contribute, yourQuote
- Buyer2 using this information may decide
 - either to send an ok message to the Seller followed by the address the book should be sent to, and then she waits for a date from the Seller,
 - or to give up and send a ko message



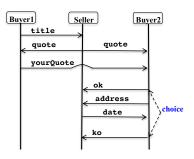
- Buyer1 sends a message to Seller with the title of the book she wants to buy
- Seller after receiving a title sends to both buyers a quote of the price
- Buyer1 computes how much she wants to pay and sends to Buyer2 the amount she should contribute, yourQuote
- Buyer2 using this information may decide
 - either to send an ok message to the Seller followed by the address the book should be sent to, and then she waits for a date from the Seller,
 - or to give up and send a ko message



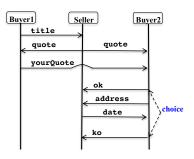
- Buyer1 sends a message to Seller with the title of the book she wants to buy
- Seller after receiving a title sends to both buyers a quote of the price
- Buyer1 computes how much she wants to pay and sends to Buyer2 the amount she should contribute, yourQuote
- Buyer2 using this information may decide
- either to send an ok message to the Seller followed by the address the book
 - should be sent to, and then she waits for a date from the Seller,
 - or to give up and send a ko message



- Buyer1 sends a message to Seller with the title of the book she wants to buy
- Seller after receiving a title sends to both buyers a quote of the price
- Buyer1 computes how much she wants to pay and sends to Buyer2 the amount she should contribute, yourQuote
- Buyer2 using this information may decide
 - either to send an ok message to the Seller followed by the address the book should be sent to, and then she waits for a date from the Seller.
 - or to give up and send a ko message.



- Buyer1 sends a message to Seller with the title of the book she wants to buy
- Seller after receiving a title sends to both buyers a quote of the price
- Buyer1 computes how much she wants to pay and sends to Buyer2 the amount she should contribute, yourQuote
- Buyer2 using this information may decide
 - either to send an ok message to the Seller followed by the address the book should be sent to, and then she waits for a date from the Seller,
 - or to give up and send a ko message.



- Buyer1 sends a message to Seller with the title of the book she wants to buy
- Seller after receiving a title sends to both buyers a quote of the price
- Buyer1 computes how much she wants to pay and sends to Buyer2 the amount she should contribute, yourQuote
- Buyer2 using this information may decide
 - either to send an ok message to the Seller followed by the address the book should be sent to, and then she waits for a date from the Seller,
 - or to give up and send a ko message.

Global type of the session (where B1, B2 and S stand for Buyer1, Buyer2 and Seller) is

```
\begin{split} &B1 \to S: \texttt{title}; \\ &S \to B1: \texttt{quote}; S \to B2: \texttt{quote}; \\ &B1 \to B2: \texttt{yourQuote}; \\ &B2 \to S: \{\texttt{ok}; B2 \to S: \texttt{address}; S \to B2: \texttt{date}; \texttt{End} \;, \; \texttt{ko}; \texttt{End} \end{split}
```

Session types of participants: obtained by projection from the global type.

```
T_{B1} = S!title; S? quote; B2! yourQuote; End
B1?title;
T_{S} = B1! quote; B2! quote;
B2? \{ok; B2? address; B2! date; End, ko; End\}
S? quote;
T_{B2} = B1? yourQuote;
S! \{ok; S! address; S? date; End, ko; End\}
```

- B2?{ok; , ko; } receiving one out of a set of messages input/external choice
- S!{ok; , ko; } sending one out of a set of messages output/internal choice

Global type of the session (where B1, B2 and S stand for Buyer1, Buyer2 and Seller) is

```
\begin{split} &B1 \to S: \texttt{title;} \\ &S \to B1: \texttt{quote;} S \to B2: \texttt{quote;} \\ &B1 \to B2: \texttt{yourQuote;} \\ &B2 \to S: \{\texttt{ok;} B2 \to S: \texttt{address;} S \to B2: \texttt{date;} \texttt{End} \;, \; \texttt{ko;} \texttt{End} \} \end{split}
```

Session types of participants: obtained by projection from the global type.

```
\begin{array}{ll} T_{B1} & = & S! \text{title}; S? \text{quote}; B2! \text{yourQuote}; End \\ \\ T_{S} & = & B1! \text{quote}; B2! \text{quote}; \\ B2? \{\text{ok}; B2? \text{address}; B2! \text{date}; \text{End} \text{, ko}; \text{End} \} \\ \\ T_{B2} & = & B1? \text{yourQuote}; \\ S! \{\text{ok}; S! \text{address}; S? \text{date}; \text{End} \text{, ko}; \text{End} \} \end{array}
```

 $\bullet \ \ \mathsf{B2?} \{ \mathsf{ok}; _ \ , \ \mathsf{ko}; _ \} \ \mathsf{receiving} \ \mathsf{one} \ \mathsf{out} \ \mathsf{of} \ \mathsf{a} \ \mathsf{set} \ \mathsf{of} \ \mathsf{messages} \ \mathsf{input/external} \ \mathsf{choice}$

• S!{ok; , ko; } sending one out of a set of messages output/internal choice

Global type of the session (where B1, B2 and S stand for Buyer1, Buyer2 and Seller) is

```
\begin{split} &B1 \to S: \texttt{title;} \\ &S \to B1: \texttt{quote;} S \to B2: \texttt{quote;} \\ &B1 \to B2: \texttt{yourQuote;} \\ &B2 \to S: \{\texttt{ok;} B2 \to S: \texttt{address;} S \to B2: \texttt{date;} \texttt{End} \;, \; \texttt{ko;} \texttt{End} \} \end{split}
```

Session types of participants: obtained by projection from the global type.

```
\begin{array}{ll} T_{B1} & = & S! \text{title}; S? \text{quote}; B2! \text{yourQuote}; End \\ \\ T_{S} & = & B1! \text{quote}; B2! \text{quote}; \\ B2? \{\text{ok}; B2? \text{address}; B2! \text{date}; \text{End} \text{, ko}; \text{End} \} \\ \\ T_{B2} & = & B1? \text{yourQuote}; \\ S! \{\text{ok}; S! \text{address}; S? \text{date}; \text{End} \text{, ko}; \text{End} \} \end{array}
```

B2? {ok; _ , ko; _} receiving one out of a set of messages input/external choice
 S!{ok; _ , ko; _} sending one out of a set of messages output/internal choice

Global type of the session (where B1, B2 and S stand for Buyer1, Buyer2 and Seller) is

```
\begin{split} &B1 \to S: \texttt{title}; \\ &S \to B1: \texttt{quote}; S \to B2: \texttt{quote}; \\ &B1 \to B2: \texttt{yourQuote}; \\ &B2 \to S: \{\texttt{ok}; B2 \to S: \texttt{address}; S \to B2: \texttt{date}; \texttt{End} \;, \; \texttt{ko}; \texttt{End} \} \end{split}
```

Session types of participants: obtained by projection from the global type.

```
\begin{array}{ll} T_{B1} & = & S! \text{title}; S? \text{quote}; B2! \text{yourQuote}; End \\ & B1? \text{title}; \\ T_{S} & = & B1! \text{quote}; B2! \text{quote}; \\ & B2? \{\text{ok}; B2? \text{address}; B2! \text{date}; End , \text{ko}; End} \} \\ & & S? \text{quote}; \\ T_{B2} & = & B1? \text{yourQuote}; \\ & S! \{\text{ok}; S! \text{address}; S? \text{date}; End , \text{ko}; End} \} \end{array}
```

B2?{ok; __, ko; __} receiving one out of a set of messages input/external choice
S!{ok; __, ko; __} sending one out of a set of messages output/internal choice

Global type of the session (where B1, B2 and S stand for Buyer1, Buyer2 and Seller) is

```
\begin{split} &B1 \to S: \texttt{title;} \\ &S \to B1: \texttt{quote;} S \to B2: \texttt{quote;} \\ &B1 \to B2: \texttt{yourQuote;} \\ &B2 \to S: \left\{\texttt{ok;} B2 \to S: \texttt{address;} S \to B2: \texttt{date;} \texttt{End} \right., \, \, \texttt{ko;} \texttt{End} \right\} \end{split}
```

Session types of participants: obtained by projection from the global type.

```
\begin{array}{lll} T_{B1} & = & S! \text{title}; S? \text{quote}; B2! \text{yourQuote}; End \\ & & B1? \text{title}; \\ T_{S} & = & B1! \text{quote}; B2! \text{quote}; \\ & B2? \{\text{ok}; B2? \text{address}; B2! \text{date}; End , \text{ko}; End} \} \\ & & & S? \text{quote}; \\ T_{B2} & = & B1? \text{yourQuote}; \\ & & S! \{\text{ok}; S! \text{address}; S? \text{date}; End , \text{ko}; End} \} \end{array}
```

- B2?{ok; , ko; } receiving one out of a set of messages input/external choice
- S!{ok; , ko; } sending one out of a set of messages output/internal choice

Global type of the session (where B1, B2 and S stand for Buyer1, Buyer2 and Seller) is

```
\begin{split} &B1 \to S: \texttt{title}; \\ &S \to B1: \texttt{quote}; S \to B2: \texttt{quote}; \\ &B1 \to B2: \texttt{yourQuote}; \\ &B2 \to S: \{\texttt{ok}; B2 \to S: \texttt{address}; S \to B2: \texttt{date}; \texttt{End} \;, \; \texttt{ko}; \texttt{End} \} \end{split}
```

Session types of participants: obtained by projection from the global type.

```
\begin{array}{lll} T_{B1} & = & S! \text{title}; S? \text{quote}; B2! \text{yourQuote}; End \\ \\ T_{S} & = & B1! \text{title}; \\ B1! \text{quote}; B2! \text{quote}; \\ B2? \{\text{ok}; B2? \text{address}; B2! \text{date}; End , \text{ko}; End} \} \\ \\ T_{B2} & = & B1? \text{yourQuote}; \\ S! \{\text{ok}; S! \text{address}; S? \text{date}; End , \text{ko}; End} \} \end{array}
```

- B2?{ok; , ko; } receiving one out of a set of messages input/external choice
- $S!\{ok; , ko; \}$ sending one out of a set of messages output/internal choice

- p, q, r participant names λ message label
 - Global types

- $\mathsf{G} ::=_{\rho} \mathsf{p} \to \mathsf{q}:\{\lambda_i;\mathsf{G}_i\}_{i\in I} \mid \mathsf{End}_i$
- where $l \neq \emptyset$, $p \neq q$ and $\lambda_j \neq \lambda_h$ for $j \neq h$.
- Session types
- $\mathsf{T} ::=_{\rho} \mathsf{q} \,!\, \{\lambda_{i}; \mathsf{T}_{i}\}_{i\in N} \mid \mathsf{p}\,?\, \{\lambda_{i}; \mathsf{T}_{i}\}_{i\in N} \mid \mathsf{End}$

Projection

- p, q, r participant names
- λ message label

Global types

$$\mathsf{G} ::=_{\rho} \mathsf{p} \to \mathsf{q}:\{\lambda_i;\mathsf{G}_i\}_{i\in I} \mid \mathsf{End}$$

where $I \neq \emptyset$, $p \neq q$ and $\lambda_j \neq \lambda_h$ for $j \neq h$. Coinductive definition. Only regular terms.

Session types

$$\mathsf{T} ::=_{\rho} \mathsf{q} \,!\, \{\lambda_i; \mathsf{T}_i\}_{i\in N} \mid \mathsf{p} \,?\, \{\lambda_i; \mathsf{T}_i\}_{i\in N} \mid \mathsf{End}$$

Projection

$$\bullet \ (p \rightarrow q : \{\lambda_i; G_i\}_{i \in I}) \upharpoonright r = \begin{cases} q ! \ \{\lambda_i; G_i \upharpoonright r\}_{i \in I} & \text{if } r = p \neq q, \\ p ? \ \{\lambda_i; G_i \upharpoonright r\}_{i \in I} & \text{if } r = q \neq p, \\ G_1 \upharpoonright r & \text{if } r \neq p \text{ and } r \neq q \\ & \forall i, j \in I \ G_i \upharpoonright r = G_j \end{cases}$$

• End r = End

- p, q, r participant names λ message label
 - Global types

$$\mathsf{G} ::=_{\rho} \mathsf{p} \to \mathsf{q}:\{\lambda_i;\mathsf{G}_i\}_{i\in I} \mid \mathsf{End}$$

where $I \neq \emptyset$, $p \neq q$ and $\lambda_j \neq \lambda_h$ for $j \neq h$. Coinductive definition. Only regular terms.

Session types

$$\mathsf{T} ::=_{\rho} \mathsf{q} \,!\, \{\lambda_i; \mathsf{T}_i\}_{i \in \mathsf{N}} \mid \mathsf{p} \,?\, \{\lambda_i; \mathsf{T}_i\}_{i \in \mathsf{N}} \mid \mathsf{End}$$

Projection

$$\bullet \ (p \rightarrow q; \{\lambda_i; G_i\}_{i \in I}) \! \upharpoonright \! r = \begin{cases} q \! \upharpoonright \! \{\lambda_i; G_i \! \upharpoonright \! r\}_{i \in I} & \text{if } r = p \neq q, \\ p \! ? \{\lambda_i; G_i \! \upharpoonright \! r\}_{i \in I} & \text{if } r = q \neq p, \\ G_1 \! \upharpoonright \! r & \text{if } r \neq p \text{ and } r \neq q, \\ \forall i, j \in I \ G_i \! \upharpoonright \! r = G_j \! \upharpoonright$$

End | r = End

p, q, r participant names λ message label

Global types

$$G ::=_{\rho} p \rightarrow q: \{\lambda_i; G_i\}_{i \in I} \mid End$$

where $I \neq \emptyset$, $p \neq q$ and $\lambda_j \neq \lambda_h$ for $j \neq h$. Coinductive definition. Only regular terms.

Session types

$$\mathsf{T} \quad ::=_{\rho} \quad \mathsf{q} \,!\, \{\lambda_i; \mathsf{T}_i\}_{i \in \mathsf{N}} \mid \mathsf{p} \,?\, \{\lambda_i; \mathsf{T}_i\}_{i \in \mathsf{N}} \mid \mathsf{End}$$

Projection

$$\bullet \ (p \rightarrow q : \{\lambda_i; G_i\}_{i \in I}) \! \upharpoonright \! r = \begin{cases} q \, ! \, \{\lambda_i; G_i \! \upharpoonright \! r\}_{i \in I} & \text{if } r = p \neq q, \\ p \, ? \, \{\lambda_i; G_i \! \upharpoonright \! r\}_{i \in I} & \text{if } r = q \neq p, \\ G_1 \! \upharpoonright \! r & \text{if } r \neq p \text{ and } r \neq q \\ & \forall i, j \in I \ G_i \! \upharpoonright \! r = G_j \! \upharpoonright \! r \end{cases}$$

End \(r = End \)

- p, q, r participant names λ message label
 - Global types

$$G ::=_{\rho} p \rightarrow q:\{\lambda_i; G_i\}_{i \in I} \mid End$$

where $I \neq \emptyset$, $p \neq q$ and $\lambda_j \neq \lambda_h$ for $j \neq h$. Coinductive definition. Only regular terms.

Session types

$$\mathsf{T} ::=_{\rho} \mathsf{q} \,!\, \{\lambda_i; \mathsf{T}_i\}_{i \in \mathsf{N}} \mid \mathsf{p} \,?\, \{\lambda_i; \mathsf{T}_i\}_{i \in \mathsf{N}} \mid \mathsf{End}$$

Projection

$$\bullet \ (p \rightarrow q : \{\lambda_i; G_i\}_{i \in I}) \! \upharpoonright \! r = \begin{cases} q \, ! \, \{\lambda_i; G_i \! \upharpoonright \! r \,\}_{i \in I} & \text{if } r = p \neq q, \\ p \, ? \, \{\lambda_i; G_i \! \upharpoonright \! r \,\}_{i \in I} & \text{if } r = q \neq p, \\ G_1 \! \upharpoonright \! r & \text{if } r \neq p \text{ and } r \neq q \\ & \forall i, j \in I \ G_i \! \upharpoonright \! r = G_j \! \upharpoonright \! r \end{cases}$$

End \(r = End \)

- p, q, r participant names λ message label
 - Global types

$$G ::=_{\rho} p \rightarrow q: \{\lambda_i; G_i\}_{i \in I} \mid End$$

where $I \neq \emptyset$, $p \neq q$ and $\lambda_j \neq \lambda_h$ for $j \neq h$. Coinductive definition. Only regular terms.

Session types

$$\mathsf{T} ::=_{\rho} \mathsf{q} \,!\, \{\lambda_i; \mathsf{T}_i\}_{i\in N} \mid \mathsf{p} \,?\, \{\lambda_i; \mathsf{T}_i\}_{i\in N} \mid \mathsf{End}$$

Projection

$$\bullet \ (p \rightarrow q : \{\lambda_i; G_i\}_{i \in I}) \! \upharpoonright \! r = \begin{cases} q \, ! \, \{\lambda_i; G_i \! \upharpoonright \! r \,\}_{i \in I} & \text{if } r = p \neq q, \\ p \, ? \, \{\lambda_i; G_i \! \upharpoonright \! r \,\}_{i \in I} & \text{if } r = q \neq p, \\ G_1 \! \upharpoonright \! r & \text{if } r \neq p \text{ and } r \neq q \\ & \forall i, j \in I \ G_i \! \upharpoonright \! r = G_j \! \upharpoonright \! r \end{cases}$$

End \r = End

- Projectability of global types on all participants ensures realisability of the protocol.
- Crucial is projection of a choice on participants different from sender and receiver.

Example

Assume we add B2 ightarrow B1 : ko in the branch ko of the choice

 $B2 \to S: \{\text{ok}; B2 \to S: \text{address}; S \to B2: \text{date}; \text{End}\;,\; \text{ko}; B2 \to B1: \text{ko}; \text{End}\}$

This protocol is not realisable:

S?quote:

B1?yourQuote;

S!{ok; S! address; S? date; End , ko; B1! ko; End}

 $T_{B1} = S!$ title; S?quote; B2!yourQuote; B2?ke; End

- More flexible projections have been proposed
- We only consider G projectable on all participants.

- Projectability of global types on all participants ensures realisability of the protocol.
- Crucial is projection of a choice on participants different from sender and receiver.

Example

```
Assume we add B2 \rightarrow B1 : ko in the branch ko of the choice
```

```
...; B2 \to S: \{\text{ok}; B2 \to S: \text{address}; S \to B2: \text{date}; \text{End} \ , \ \text{ko}; \text{B2} \to \text{B1}: \text{ko}; \text{End} \}
```

This protocol is not realisable:

```
S!quote;
TB2 = B1?yourQuote;
S!{ok;S!address;S?date;End, ko;B1!ko;End}
```

T_{B1} = S!title; S?quote; B2!yourQuote; B2?ko; End

- More flexible projections have been proposed
- We only consider G projectable on all participants.

- Projectability of global types on all participants ensures realisability of the protocol.
- Crucial is projection of a choice on participants different from sender and receiver.

Example

```
••• :
```

 $\mathsf{B2} \to \mathsf{S} : \{ \mathsf{ok}; \mathsf{B2} \to \mathsf{S} : \mathsf{address}; \mathsf{S} \to \mathsf{B2} : \mathsf{date}; \mathsf{End} \;,\; \mathsf{ko}; \mathsf{B2} \to \mathsf{B1} : \mathsf{ko}; \mathsf{End} \}$

This protocol is not realisable:

```
T_{B2} = \begin{array}{c} S \mbox{?quote;} \\ B1 \mbox{?yourQuote;} \\ S! \mbox{\{ok; S! address; S? date; End , ko; B1! ko; End\}} \end{array}
```

 $T_{B1} = S!$ title; S?quote; B2!yourQuote; $\frac{B2?}{ko}$; End

- More flexible projections have been proposed
- We only consider G projectable on all participants.

Assume we add B2 \rightarrow B1 : ko in the branch ko of the choice

- Projectability of global types on all participants ensures realisability of the protocol.
- Crucial is projection of a choice on participants different from sender and receiver.

Example

```
Assume we add B2 \rightarrow B1 : \mathtt{ko} in the branch \mathtt{ko} of the choice
```

```
...; B2 \rightarrow S : \{ok; B2 \rightarrow S : address; S \rightarrow B2 : date; End, ko; B2 \rightarrow B1 : ko; End\}
```

This protocol is not realisable:

```
\begin{array}{rcl} & S ? \, \text{quote;} \\ T_{B2} & = & B1? \, \text{yourQuote;} \\ & S! \big\{ \text{ok;} \, S! \, \text{address;} \, S? \, \text{date;} \, \text{End} \, , \, \, \text{ko;} \, \text{B1!ko;} \, \text{End} \big\} \end{array}
```

 $T_{B1} = S!$ title; S? quote; B2! yourQuote; B2? ko; End

- More flexible projections have been proposed!
- We only consider G projectable on all participants.

- Projectability of global types on all participants ensures realisability of the protocol.
- Crucial is projection of a choice on participants different from sender and receiver.

Example

```
Assume we add B2 \rightarrow B1 : k0 in the branch k0 of the choice
```

```
...;
```

```
\text{B2} \rightarrow \text{S}: \{\text{ok}; \text{B2} \rightarrow \text{S}: \text{address}; \text{S} \rightarrow \text{B2}: \text{date}; \text{End} \;, \; \text{ko}; \text{B2} \rightarrow \text{B1}: \text{ko}; \text{End} \}
```

This protocol is not realisable:

```
\begin{array}{rcl} & S? \texttt{quote}; \\ T_{B2} & = & B1? \texttt{yourQuote}; \\ & S! \left\{ \texttt{ok}; S! \, \texttt{address}; S? \, \texttt{date}; \, \texttt{End} \,, \, \, \texttt{ko}; \, \texttt{B1!ko}; \, \texttt{End} \right\} \end{array}
```

```
T_{B1} = S!title; S? quote; B2! yourQuote; B2? ko; End
```

- More flexible projections have been proposed!
- We only consider G projectable on all participants.

Processes and Queues

 We focus on the core message-passing aspects of asynchronous multiparty sessions. We can define processes as session types.

$$P ::=_{\rho} q! \{\lambda_i; P_i\}_{i \in I} | p? \{\lambda_i; P_i\}_{i \in I} | 0$$

- Projection of a global type onto a participant defined changing End vert r = End with End
 vert r = 0
- To hold messages in transit we use a queue defined by:

$$\mathcal{M} ::= \emptyset \mid \langle \mathsf{p}, \lambda, \mathsf{q} \rangle \cdot \mathcal{M}$$

Order between messages matters only for messages with the same sender and receiver. We consider queues modulo the following structural equivalence:

$$\mathcal{M} \cdot \langle \mathsf{p}, \lambda, \mathsf{q} \rangle \cdot \langle \mathsf{r}, \lambda', \mathsf{s} \rangle \cdot \mathcal{M}' \equiv \mathcal{M} \cdot \langle \mathsf{r}, \lambda', \mathsf{s} \rangle \cdot \langle \mathsf{p}, \lambda, \mathsf{q} \rangle \cdot \mathcal{M}' \quad \text{if} \quad \mathsf{p} \neq \mathsf{r} \quad \text{or} \quad \mathsf{q} \neq \mathsf{s}$$

Processes and Queues

 We focus on the core message-passing aspects of asynchronous multiparty sessions. We can define processes as session types.

$$P ::=_{\rho} q! \{\lambda_i; P_i\}_{i \in I} | p? \{\lambda_i; P_i\}_{i \in I} | 0$$

- \bullet Projection of a global type onto a participant defined changing End ${\upharpoonright} r = \text{End}$ with End ${\upharpoonright} r = 0$
- To hold messages in transit we use a queue defined by:

$$\mathcal{M} ::= \emptyset \mid \langle \mathsf{p}, \lambda, \mathsf{q} \rangle \cdot \mathcal{M}$$

Order between messages matters only for messages with the same sender and receiver. We consider queues modulo the following structural equivalence:

$$\mathcal{M} \cdot \langle p, \lambda, q \rangle \cdot \langle r, \lambda', s \rangle \cdot \mathcal{M}' \equiv \mathcal{M} \cdot \langle r, \lambda', s \rangle \cdot \langle p, \lambda, q \rangle \cdot \mathcal{M}' \ \text{if} \ p \neq r \ \text{or} \ q \neq s$$

Processes and Queues

 We focus on the core message-passing aspects of asynchronous multiparty sessions. We can define processes as session types.

$$P ::=_{\rho} q! \{\lambda_i; P_i\}_{i \in I} | p? \{\lambda_i; P_i\}_{i \in I} | 0$$

- \bullet Projection of a global type onto a participant defined changing End ${\upharpoonright} r=$ End with End ${\upharpoonright} r=0$
- To hold messages in transit we use a queue defined by:

$$\mathcal{M} ::= \emptyset \mid \langle \mathsf{p}, \lambda, \mathsf{q} \rangle \cdot \mathcal{M}$$

Order between messages matters only for messages with the same sender and receiver. We consider queues modulo the following structural equivalence:

$$\mathcal{M} \cdot \langle p, \lambda, q \rangle \cdot \langle r, \lambda', s \rangle \cdot \mathcal{M}' \equiv \mathcal{M} \cdot \langle r, \lambda', s \rangle \cdot \langle p, \lambda, q \rangle \cdot \mathcal{M}' \ \text{if} \ p \neq r \ \text{or} \ q \neq s$$

Processes and Queues

 We focus on the core message-passing aspects of asynchronous multiparty sessions. We can define processes as session types.

$$P ::=_{\rho} q! \{\lambda_i; P_i\}_{i \in I} | p? \{\lambda_i; P_i\}_{i \in I} | 0$$

- \bullet Projection of a global type onto a participant defined changing End ${\upharpoonright} r=$ End with End ${\upharpoonright} r=0$
- To hold messages in transit we use a queue defined by:

$$\mathcal{M} ::= \emptyset \mid \langle \mathsf{p}, \lambda, \mathsf{q} \rangle \cdot \mathcal{M}$$

Order between messages matters only for messages with the same sender and receiver. We consider queues modulo the following structural equivalence:

$$\mathcal{M} \cdot \langle p, \lambda, q \rangle \cdot \langle r, \lambda', s \rangle \cdot \mathcal{M}' \equiv \mathcal{M} \cdot \langle r, \lambda', s \rangle \cdot \langle p, \lambda, q \rangle \cdot \mathcal{M}' \quad \text{if} \quad p \neq r \quad \text{or} \quad q \neq s$$

ullet A network ${\mathbb N}$ is a parallel composition of located processes

$$\mathbb{N} ::= \mathsf{p}_1 \llbracket P_1 \rrbracket \| \cdots \| \mathsf{p}_n \llbracket P_n \rrbracket$$

where n > 0 and $p_i \neq p_j$ for $i \neq j$.

A multiparty session is

$$\mathbb{N}\parallel\mathcal{M}$$

Labelled Transition System

$$[\mathsf{Send}] \ \ \mathsf{p}[\![\,\mathsf{q}\, !\, \{\lambda_i; P_i\}_{i\in I}\,]\!] \parallel \mathbb{N} \parallel \mathcal{M} \xrightarrow{\mathsf{p}\, \mathsf{q}\, !\lambda_h} \mathsf{p}[\![\, P_h\,]\!] \parallel \mathbb{N} \parallel \mathcal{M} \cdot \langle \mathsf{p}, \lambda_h, \mathsf{q} \rangle \quad h \in I$$

 $[\mathsf{Rcv}] \ \mathsf{q}\llbracket \, \mathsf{p} \, ? \, \{\lambda_i; P_i\}_{i \in I} \rrbracket \parallel \mathsf{N} \parallel \langle \mathsf{p}, \lambda_h, \mathsf{q} \rangle \cdot \mathcal{M} \xrightarrow{\, \mathsf{p} \, \mathsf{q}^2 \lambda_h \,} \mathsf{q} \llbracket \, Q_h \rrbracket \parallel \mathsf{N} \parallel \mathcal{M} \quad h \in I$

ullet A network ${\mathbb N}$ is a parallel composition of located processes

$$\mathbb{N} ::= \mathsf{p}_1 \llbracket P_1 \rrbracket \| \cdots \| \mathsf{p}_n \llbracket P_n \rrbracket$$

where n > 0 and $p_i \neq p_j$ for $i \neq j$.

A multiparty session is

$$\mathbb{N}\parallel\mathcal{M}$$

Labelled Transition System

 $[\mathsf{Send}] \quad \mathsf{p}[\![\,\mathsf{q}\,!\,\{\lambda_i;P_i\}_{i\in I}\,]\!] \parallel \mathbb{N} \parallel \mathcal{M} \xrightarrow{\mathsf{p}\,\mathsf{q}\,!\,\lambda_h} \mathsf{p}[\![\,P_h\,]\!] \parallel \mathbb{N} \parallel \mathcal{M} \cdot \langle \mathsf{p},\lambda_h,\mathsf{q}\rangle \quad h\in I$

 $[\mathsf{Rcv}] \ \mathsf{q}\llbracket \mathsf{p} ? \{\lambda_i; P_i\}_{i \in I} \rrbracket \parallel \mathsf{N} \parallel \langle \mathsf{p}, \lambda_h, \mathsf{q} \rangle \cdot \mathcal{M} \xrightarrow{\mathsf{p} \cdot \mathsf{q}^2 \lambda_h} \mathsf{q}\llbracket Q_h \rrbracket \parallel \mathsf{N} \parallel \mathcal{M} \quad h \in I$

A network N is a parallel composition of located processes

$$\mathbb{N} ::= \mathsf{p}_1 \llbracket P_1 \rrbracket \| \cdots \| \mathsf{p}_n \llbracket P_n \rrbracket$$

where n > 0 and $p_i \neq p_j$ for $i \neq j$.

A multiparty session is

$$\mathbb{N} \parallel \mathcal{M}$$

Labelled Transition System

$$[\mathsf{Send}] \ \ \mathsf{p} \llbracket \, \mathsf{q} \, ! \, \{\lambda_i; P_i\}_{i \in I} \, \rrbracket \parallel \mathbb{N} \parallel \mathcal{M} \xrightarrow{\mathsf{p} \, \mathsf{q}! \lambda_h} \mathsf{p} \llbracket \, P_h \, \rrbracket \parallel \mathbb{N} \parallel \mathcal{M} \cdot \langle \mathsf{p}, \lambda_h, \mathsf{q} \rangle \quad h \in I$$

$$[\mathsf{Rcv}] \ \mathsf{q}[\![\mathsf{p}\,?\,\{\lambda_i;P_i\}_{i\in I}]\!] \parallel \mathbb{N} \parallel \langle \mathsf{p},\lambda_h,\mathsf{q}\rangle \cdot \mathcal{M} \xrightarrow{\mathsf{p}\,\mathsf{q}?\lambda_h} \mathsf{q}[\![Q_h]\!] \parallel \mathbb{N} \parallel \mathcal{M} \quad h \in I$$

A network N is a parallel composition of located processes

$$\mathbb{N} ::= \mathsf{p}_1 \llbracket P_1 \rrbracket \| \cdots \| \mathsf{p}_n \llbracket P_n \rrbracket$$

where n > 0 and $p_i \neq p_j$ for $i \neq j$.

A multiparty session is

$$\mathbb{N} \parallel \mathcal{M}$$

Labelled Transition System

$$[\mathsf{Send}] \ \ \mathsf{p}\llbracket\,\mathsf{q}\,!\,\{\lambda_i;P_i\}_{i\in I}\,\rrbracket\,\|\,\,\mathbb{N}\,\,\|\,\,\mathcal{M}\,\,\stackrel{\mathsf{p}\,\mathsf{q}\,!\,\lambda_h}{\longrightarrow}\,\mathsf{p}\llbracket\,P_h\,\rrbracket\,\,\|\,\,\mathbb{N}\,\,\|\,\,\mathcal{M}\,\cdot\,\langle\,\mathsf{p},\lambda_h,\mathsf{q}\rangle\quad h\in I_{\mathsf{q}}.$$

$$[\mathsf{Rcv}] \ \mathsf{q}[\![\mathsf{p} \, ? \, \{\lambda_i; P_i\}_{i \in I}]\!] \parallel \mathbb{N} \parallel \langle \mathsf{p}, \lambda_h, \mathsf{q} \rangle \cdot \mathcal{M} \xrightarrow{\mathsf{p} \, \mathsf{q}?\lambda_h} \mathsf{q}[\![\, Q_h \,]\!] \parallel \mathbb{N} \parallel \mathcal{M} \quad h \in I$$

A network N is a parallel composition of located processes

$$\mathbb{N} ::= \mathsf{p}_1 \llbracket P_1 \rrbracket \| \cdots \| \mathsf{p}_n \llbracket P_n \rrbracket$$

where n > 0 and $p_i \neq p_j$ for $i \neq j$.

A multiparty session is

$$\mathbb{N} \parallel \mathcal{M}$$

Labelled Transition System

$$[\mathsf{Send}] \ \ \mathsf{p}\llbracket\,\mathsf{q}\,!\,\{\lambda_i;P_i\}_{i\in I}\,\rrbracket\,\|\,\,\mathbb{N}\,\,\|\,\,\mathcal{M}\,\,\stackrel{\mathsf{p}\,\mathsf{q}\,!\,\lambda_h}{\longrightarrow}\,\mathsf{p}\llbracket\,P_h\,\rrbracket\,\,\|\,\,\mathbb{N}\,\,\|\,\,\mathcal{M}\,\cdot\,\langle\,\mathsf{p},\lambda_h,\mathsf{q}\rangle\quad h\in I_{\mathsf{q}}.$$

$$[\mathsf{Rcv}] \ \mathsf{q}[\![\ \mathsf{p} \ ? \ \{\lambda_i; P_i\}_{i \in I}]\!] \parallel \mathbb{N} \parallel \langle \mathsf{p}, \lambda_h, \mathsf{q} \rangle \cdot \mathcal{M} \xrightarrow{\mathsf{p} \ \mathsf{q} ? \lambda_h} \mathsf{q}[\![\ Q_h]\!] \parallel \mathbb{N} \parallel \mathcal{M} \quad h \in I$$

A multiparty session $\mathbb{N} \parallel \mathcal{M}$ has the progress property iff it has

no deadlocks
 all derivatives of N || M are

- no locked inputs all inputs will eventually be satisfied
- no orphan messages
 all messages in the queue will eventually be read

- no deadlocks all derivatives of $\mathbb{N} \parallel \mathcal{M}$ are
 - either terminated, i.e., $\mathbb{N} \equiv p \llbracket 0 \rrbracket$ and $\mathcal{M} = \emptyset$
 - or live, i.e. if $\mathbb{N} \parallel \mathcal{M} \xrightarrow{\beta}$ for some β ;
- no locked inputs
 all inputs will eventually be satisfied
- no orphan messages
 all messages in the queue will eventually be read

- no deadlocks all derivatives of $\mathbb{N} \parallel \mathcal{M}$ are
 - either terminated, i.e., $\mathbb{N} \equiv p \llbracket 0 \rrbracket$ and $\mathcal{M} = \emptyset$
 - or live, i.e. if $\mathbb{N} \parallel \mathcal{M} \xrightarrow{\beta}$ for some β ;
- no locked inputs
 all inputs will eventually be satisfied
- no orphan messages
 all messages in the queue will eventually be read

- no deadlocks
 all derivatives of N || M are
 - either terminated, i.e., $\mathbb{N} \equiv p \llbracket 0 \rrbracket$ and $\mathcal{M} = \emptyset$
 - or live, i.e. if $\mathbb{N} \parallel \mathcal{M} \xrightarrow{\beta}$ for some β ;
- no locked inputs
 all inputs will eventually be satisfied
- no orphan messages
 all messages in the queue will eventually be read

- no deadlocks all derivatives of $\mathbb{N} \parallel \mathcal{M}$ are
 - either terminated, i.e., $\mathbb{N} \equiv p \llbracket 0 \rrbracket$ and $\mathcal{M} = \emptyset$
 - or live, i.e. if $\mathbb{N} \parallel \mathcal{M} \xrightarrow{\beta}$ for some β ;
- no locked inputs
 all inputs will eventually be satisfied
- no orphan messages all messages in the queue will eventually be read

- no deadlocks
 all derivatives of N || M are
 - either terminated, i.e., $\mathbb{N} \equiv p \llbracket 0 \rrbracket$ and $\mathcal{M} = \emptyset$
 - or live, i.e. if $\mathbb{N} \parallel \mathcal{M} \xrightarrow{\beta}$ for some β ;
- no locked inputs all inputs will eventually be satisfied
- no orphan messages
 all messages in the queue will eventually be read

Well-typed Networks

$$[\text{I-Net}] \ \frac{P_i \leq \mathsf{G} \upharpoonright \mathsf{p}_i \quad i \in I \quad \mathsf{participants}(\mathsf{G}) \subseteq \{\mathsf{p}_i \mid i \in I\}}{\vdash \mathsf{\Pi}_{i \in I} \mathsf{p}_i \llbracket P_i \rrbracket : \mathsf{G}}$$

$$[\leq -\text{Out}] \frac{P_i \leq Q_i \quad i \in I}{\mathsf{q}! \{\lambda_i; P_i\}_{i \in I} \leq \mathsf{q}! \{\lambda_i; P_i\}_{i \in I \cup J}} \quad [\leq -\text{In}] \frac{P_i \leq Q_i \quad i \in I}{\mathsf{q}? \{\lambda_i; P_i\}_{i \in I \cup J} \leq \mathsf{q}? \{\lambda_i; P_i\}_{i \in I}}$$

- Internal choices are better if they send less message labels
- External choices are better if they receive more input message labels

Well-typed Networks

[I-Net]
$$\frac{P_i \leq \mathsf{G} \upharpoonright \mathsf{p}_i \quad i \in I \quad \mathsf{participants}(\mathsf{G}) \subseteq \{\mathsf{p}_i \mid i \in I\}}{\vdash \mathsf{\Pi}_{i \in I} \mathsf{p}_i \llbracket P_i \rrbracket : \mathsf{G}}$$

$$\big[\leq \text{-Out} \big] \frac{P_i \leq Q_i \quad i \in I}{ \mathfrak{q} \,! \, \{\lambda_i; P_i\}_{i \in I} \leq \mathfrak{q} \,! \, \{\lambda_i; P_i\}_{i \in I \cup J} } \quad \big[\leq \text{-In} \big] \frac{P_i \leq Q_i \quad i \in I}{ \mathfrak{q} \,? \, \{\lambda_i; P_i\}_{i \in I \cup J} \leq \mathfrak{q} \,? \, \{\lambda_i; P_i\}_{i \in I} }$$

- Internal choices are better if they send less message labels.
- External choices are better if they receive more input message labels.

Well-typed Networks

[I-Net]
$$\frac{P_i \leq \mathsf{G} \upharpoonright \mathsf{p}_i \quad i \in I \quad \mathsf{participants}(\mathsf{G}) \subseteq \{\mathsf{p}_i \mid i \in I\}}{\vdash \mathsf{\Pi}_{i \in I} \mathsf{p}_i \llbracket P_i \rrbracket : \mathsf{G}}$$

$$[\leq -\mathsf{Out}] \frac{P_i \leq Q_i \quad i \in I}{\mathsf{q} \,!\, \{\lambda_i; P_i\}_{i \in I} \leq \mathsf{q} \,!\, \{\lambda_i; P_i\}_{i \in I \cup J}} \quad [\leq -\mathsf{In}] \frac{P_i \leq Q_i \quad i \in I}{\mathsf{q} \,?\, \{\lambda_i; P_i\}_{i \in I \cup J} \leq \mathsf{q} \,?\, \{\lambda_i; P_i\}_{i \in I}}$$

- Internal choices are better if they send less message labels.
- External choices are better if they receive more input message labels.

Well-typed Networks

[I-Net]
$$\frac{P_i \leq G \upharpoonright p_i \quad i \in I \quad \text{participants}(G) \subseteq \{p_i \mid i \in I\}}{\vdash \prod_{i \in I} p_i \llbracket P_i \rrbracket : G}$$

$$[\leq -\mathsf{Out}] \frac{P_i \leq Q_i \quad i \in I}{\mathsf{q} \,!\, \{\lambda_i; P_i\}_{i \in I} \leq \mathsf{q} \,!\, \{\lambda_i; P_i\}_{i \in I \cup J}} \quad [\leq -\mathsf{In}] \frac{P_i \leq Q_i \quad i \in I}{\mathsf{q} \,?\, \{\lambda_i; P_i\}_{i \in I \cup J} \leq \mathsf{q} \,?\, \{\lambda_i; P_i\}_{i \in I}}$$

- Internal choices are better if they send less message labels.
- External choices are better if they receive more input message labels.

Progress of Multiparty Sessions

A global type G is bounded if all $p \in G$ occur at bounded depth in all paths of G (needed for no locked inputs)

Theorem

If \vdash \mathbb{N} : \mathbb{G} for some bounded \mathbb{G} and $\mathbb{N} \parallel \emptyset \to^* \mathbb{N}' \parallel \mathcal{M}$ then $\mathbb{N}' \parallel \mathcal{M}$ has the progress property.

Progress of Multiparty Sessions

A global type G is bounded if all $p \in G$ occur at bounded depth in all paths of G (needed for no locked inputs)

Theorem

If $\vdash \mathbb{N} : \mathsf{G}$ for some bounded G and $\mathbb{N} \parallel \emptyset \to^* \mathbb{N}' \parallel \mathcal{M}$ then $\mathbb{N}' \parallel \mathcal{M}$ has the progress property.

Progress of Multiparty Sessions

A global type G is bounded if all $p \in G$ occur at bounded depth in all paths of G (needed for no locked inputs)

Theorem

If $\vdash \mathbb{N} : \mathsf{G}$ for some bounded G and $\mathbb{N} \parallel \emptyset \to^* \mathbb{N}' \parallel \mathcal{M}$ then $\mathbb{N}' \parallel \mathcal{M}$ has the progress property.

Example

Participants p and q want to inform each other once they arrive home. Once they get home they send each other a message and wait to receive a similar one from the other.

$$p[\![\,q\,!\,\text{home}\,;\,q\,?\,\text{home}\,]\!] \parallel q[\![\,p\,!\,\text{home}\,;\,p\,?\,\text{home}\,]\!] \parallel \emptyset$$

```
Let \mathbb{N} = \mathsf{p}[\![\mathsf{q}! \, \mathsf{home}; \mathsf{q}? \, \mathsf{home}]\!] \parallel \mathsf{q}[\![\mathsf{p}! \, \mathsf{home}; \mathsf{p}? \, \mathsf{home}]\!]
```

$$G_1 = p \rightarrow q : home; q \rightarrow p : home$$
 $G_2 = q \rightarrow p : home; p \rightarrow q : home$ fail to type $N!$ $G_1 \upharpoonright p = q ! home; q ? home$ $G_1 \upharpoonright q = p ! home; p ? home$

Example

Participants p and q want to inform each other once they arrive home. Once they get home they send each other a message and wait to receive a similar one from the other.

$$p[\![\,q\,!\,\text{home}\,;\,q\,?\,\text{home}\,]\!] \parallel q[\![\,p\,!\,\text{home}\,;\,p\,?\,\text{home}\,]\!] \parallel \emptyset$$

```
Let \mathbb{N} = \mathsf{p}[\![\mathsf{q}! \, \mathsf{home}; \mathsf{q}? \, \mathsf{home}]\!] \parallel \mathsf{q}[\![\mathsf{p}! \, \mathsf{home}; \mathsf{p}? \, \mathsf{home}]\!]
```

$$G_1 = p \rightarrow q : home; q \rightarrow p : home$$
 $G_2 = q \rightarrow p : home; p \rightarrow q : home$ fail to type $N!$ $G_1 \upharpoonright p = q ! home; q ? home$ $G_1 \upharpoonright q = p ! home; p ? home$

Example

Participants p and q want to inform each other once they arrive home. Once they get home they send each other a message and wait to receive a similar one from the other.

$$p[\![\,q\,!\,\text{home}\,;\,q\,?\,\text{home}\,]\!] \parallel q[\![\,p\,!\,\text{home}\,;\,p\,?\,\text{home}\,]\!] \parallel \emptyset$$

Let $\mathbb{N} = p[q! home; q? home] | q[p! home; p? home]$

$$G_1 = p \rightarrow q : \text{home}; q \rightarrow p : \text{home} \qquad G_2 = q \rightarrow p : \text{home}; p \rightarrow q : \text{home}$$

$$G_1 \upharpoonright p = q! \text{home}; q? \text{home} \qquad G_1 \upharpoonright q = p? \text{home}; p! \text{home}$$

Example

Participants p and q want to inform each other once they arrive home. Once they get home they send each other a message and wait to receive a similar one from the other.

$$p[\![\,q\,!\,\text{home}\,;\,q\,?\,\text{home}\,]\!] \parallel q[\![\,p\,!\,\text{home}\,;\,p\,?\,\text{home}\,]\!] \parallel \emptyset$$

Let
$$\mathbb{N} = p[q! home; q? home] | q[p! home; p? home]$$

$$\begin{array}{c|c} N \parallel \emptyset & \xrightarrow{p \text{ qlhome}} & p \llbracket \text{ q? home} \rrbracket \parallel \text{ q} \llbracket \text{ p! home; p? home} \rrbracket \parallel \langle \text{p, home, q} \rangle \\ & & & & & & & & & & & \\ \hline \text{qp!home} & & & & & & & & \\ \hline \text{qp?home} & & & & & & & & \\ \hline \text{qp?home} & & & & & & & \\ \hline \text{qp?home} & & & & & & & \\ \hline \text{pq?home} & & & & & & \\ \hline \text{pq?home} & & & & & & \\ \hline \text{pq?home} & & & & & & \\ \hline \text{pq?home} & & & & & & \\ \hline \text{pq?home} & & \\ \hline \text{pq.} & &$$

Example

Participants p and q want to inform each other once they arrive home. Once they get home they send each other a message and wait to receive a similar one from the other.

$$p[\![\,q\,!\,\text{home}\,;\,q\,?\,\text{home}\,]\!] \parallel q[\![\,p\,!\,\text{home}\,;\,p\,?\,\text{home}\,]\!] \parallel \emptyset$$

Let
$$\mathbb{N} = p[q! home; q? home] | q[p! home; p? home]$$

Example

Participants p and q want to inform each other once they arrive home. Once they get home they send each other a message and wait to receive a similar one from the other.

$$p[\![\,q\,!\,\text{home}\,;\,q\,?\,\text{home}\,]\!] \parallel q[\![\,p\,!\,\text{home}\,;\,p\,?\,\text{home}\,]\!] \parallel \emptyset$$

Let $\mathbb{N} = p[q! home; q? home] | q[p! home; p? home]$

$$G_1=p\to q: \text{home}; q\to p: \text{home} \qquad G_2=q\to p: \text{home}; p\to q: \text{home}$$

$$G_1\upharpoonright p=q! \text{home}; q? \text{home} \qquad G_1\upharpoonright q=p? \text{home}; p! \text{home}$$

Example

Participants p and q want to inform each other once they arrive home. Once they get home they send each other a message and wait to receive a similar one from the other.

$$p[\![\,q\,!\,\text{home}\,;\,q\,?\,\text{home}\,]\!] \parallel q[\![\,p\,!\,\text{home}\,;\,p\,?\,\text{home}\,]\!] \parallel \emptyset$$

Let $\mathbb{N} = p[q! home; q? home] | q[p! home; p? home]$

Example

Participants p and q want to inform each other once they arrive home. Once they get home they send each other a message and wait to receive a similar one from the other.

$$p[\![\,q\,!\,\text{home}\,;\,q\,?\,\text{home}\,]\!] \parallel q[\![\,p\,!\,\text{home}\,;\,p\,?\,\text{home}\,]\!] \parallel \emptyset$$

Let
$$\mathbb{N} = p[q! home; q? home] | q[p! home; p? home]$$

Example

Participants p and q want to inform each other once they arrive home. Once they get home they send each other a message and wait to receive a similar one from the other.

$$p[\![\,q\,!\,\text{home}\,;\,q\,?\,\text{home}\,]\!] \parallel q[\![\,p\,!\,\text{home}\,;\,p\,?\,\text{home}\,]\!] \parallel \emptyset$$

Let $\mathbb{N} = p[q! home; q? home] | q[p! home; p? home]$

$$\begin{aligned} G_1 &= p \to q : \text{home}; q \to p : \text{home} \\ G_2 &= q \to p : \text{home}; p \to q : \text{home} \\ G_1 \upharpoonright p &= q ! \text{home}; q ? \text{home} \\ G_2 \upharpoonright p &= q ? \text{home}; q ! \text{home} \\ G_2 \upharpoonright q &= p ! \text{home}; p ? \text{home} \end{aligned}$$

Index

1 Introduction to Multiparty Session Types

Asynchronous Global Types

3 Conclusions

 Asynchronous subtyping² enables controlled reordering of actions by anticipating outputs, e.g.,

p! home; p? home $\leq_A p?$ home; p! home

• Let \leq be the transitive closure of \leq and \leq_A

 $[Net] \begin{tabular}{ll} $q \mid home; q ? home & \le G_1 \mid p & p \mid home; p ? home; \le G_1 \mid q \\ \hline $H \neq [q \mid home; q ? home] \mid q \mid p \mid home; p ? home] : G_1 \end{tabular}$

when

 $\mathsf{G}_1 = \mathsf{p} o \mathsf{q}$: home; $\mathsf{q} o \mathsf{p}$: home

 $G_1 \upharpoonright p = q! \text{ home}; q? \text{ home} \quad G_1 \upharpoonright q = p? \text{ home}; p! \text{ home}$

²D. Mostrous, N. Yoshida, K. Honda: Global Principal Typing in Partially Commutative Asynchronous Sessions. ESOP 2009

 Asynchronous subtyping² enables controlled reordering of actions by anticipating outputs, e.g.,

p! home; p? home $\leq_A p?$ home; p! home

• Let \leq be the transitive closure of \leq and \leq_A

$$[Net] \begin{tabular}{l} $q! \ home; q? \ home $\le G_1 \ p$ & $p! \ home; p? \ home; $\le G_1 \ p$ \\ \hline $\vdash p[\![\ q! \ home; \ q? \ home]\!] \ | \ q[\![\ p! \ home; \ p? \ home]\!] : G_1 \\ \hline \end{tabular}$$

where

$$G_1=p\to q: \text{home}; q\to p: \text{home}$$

$$G_1\!\upharpoonright\! p=q! \text{home}; q? \text{home} \quad G_1\!\upharpoonright\! q=p? \text{home}; p! \text{home}$$

Problem

 $^{^2}$ D. Mostrous, N. Yoshida, K. Honda: Global Principal Typing in Partially Commutative Asynchronous Sessions. ESOP 2009

 Asynchronous subtyping² enables controlled reordering of actions by anticipating outputs, e.g.,

p! home; p? home $\leq_A p?$ home; p! home

• Let \leq be the transitive closure of \leq and \leq_A

$$[Net] \begin{tabular}{l} $q! \ home; q? \ home $\le G_1 \ p$ & $p! \ home; p? \ home; $\le G_1 \ p$ \\ \hline $\vdash p[\![q! \ home; q? \ home]\!] \ |\![q[\![p! \ home; p? \ home]\!] : G_1 \\ \hline \end{tabular}$$

where

$$G_1=p\to q: \text{home}; q\to p: \text{home}$$

$$G_1\!\upharpoonright\! p=q! \text{home}; q? \text{home} \quad G_1\!\upharpoonright\! q=p? \text{home}; p! \text{home}$$

Problem

 $^{^2}$ D. Mostrous, N. Yoshida, K. Honda: Global Principal Typing in Partially Commutative Asynchronous Sessions. ESOP 2009

 Asynchronous subtyping² enables controlled reordering of actions by anticipating outputs, e.g.,

$$p!$$
 home; $p?$ home $\leq_A p?$ home; $p!$ home

• Let \leq be the transitive closure of \leq and \leq_A

$$[\mathsf{Net}] \begin{tabular}{l} $q ! \ \mathsf{home}; q ? \ \mathsf{home} \leq G_1 \ | \ p = p ! \ \mathsf{home}; p ? \ \mathsf{home}; \leq G_1 \ | \ q = p ! \ \mathsf{home}; p ? \ \mathsf{home} \] : G_1 \] \\ \hline \end{tabular}$$

where

$$G_1=p\to q: \text{home}; q\to p: \text{home}$$

$$G_1\!\upharpoonright\! p=q! \text{home}; q? \text{home}\quad G_1\!\upharpoonright\! q=p? \text{home}; p! \text{home}$$

Problem

²D. Mostrous, N. Yoshida, K. Honda: Global Principal Typing in Partially Commutative Asynchronous Sessions. ESOP 2009

 Asynchronous subtyping² enables controlled reordering of actions by anticipating outputs, e.g.,

$$p!$$
 home; $p?$ home $\leq_A p?$ home; $p!$ home

• Let \leq be the transitive closure of \leq and \leq_A

$$[\mathsf{Net}] \begin{tabular}{l} $q ! \texttt{home}; q ? \texttt{home} & \leq G_1 \upharpoonright p & p ! \texttt{home}; p ? \texttt{home}; \leq G_1 \upharpoonright q \\ \hline $\vdash p \llbracket q ! \texttt{home}; q ? \texttt{home} \rrbracket \parallel q \llbracket p ! \texttt{home}; p ? \texttt{home} \rrbracket : G_1 \\ \hline \end{tabular}$$

where

$$G_1=p\to q: \text{home}; q\to p: \text{home}$$

$$G_1\!\upharpoonright\! p=q! \text{home}; q? \text{home}\quad G_1\!\upharpoonright\! q=p? \text{home}; p! \text{home}$$

Problem

asynchronous subtyping is undecidable³, so $\vdash \mathbb{N} : \mathsf{G}$ is undecidable!

²D. Mostrous, N. Yoshida, K. Honda: Global Principal Typing in Partially Commutative Asynchronous Sessions. ESOP 2009

³ M. Bravetti, M. Carbone, G. Zavattaro: Undecidability of asynchronous session subtyping. Information

 Asynchronous subtyping² enables controlled reordering of actions by anticipating outputs, e.g.,

p! home; p? home $\leq_A p?$ home; p! home

• Let \leq be the transitive closure of \leq and \leq_A

$$[Net] \begin{tabular}{l} $q ! \ home; q ? \ home $\le G_1 \upharpoonright p$ & $p ! \ home; p ? \ home; $\le G_1 \upharpoonright q$ \\ \hline $\vdash p \llbracket q ! \ home; q ? \ home $\rrbracket \parallel q \llbracket p ! \ home; p ? \ home $\rrbracket : G_1$ \\ \hline \end{tabular}$$

where

$$G_1=p\to q: \text{home}; q\to p: \text{home}$$

$$G_1\upharpoonright p=q! \text{home}; q? \text{home} \quad G_1\upharpoonright q=p? \text{home}; p! \text{home}$$

Problem

asynchronous subtyping is undecidable³, so $\vdash \mathbb{N} : \mathsf{G}$ is undecidable!

²D. Mostrous, N. Yoshida, K. Honda: Global Principal Typing in Partially Commutative Asynchronous Sessions. ESOP 2009

³ M. Bravetti, M. Carbone, G. Zavattaro: Undecidability of asynchronous session subtyping. Information

- split outputs and inputs in global types
- match global types with networks bypassing projection (decidable type-checking)
- give well-formedness conditions on global types to ensure good properties

- split outputs and inputs in global types
- match global types with networks bypassing projection (decidable type-checking)
- give well-formedness conditions on global types to ensure good properties

- split outputs and inputs in global types
- match global types with networks bypassing projection (decidable type-checking)
- give well-formedness conditions on global types to ensure good properties

- split outputs and inputs in global types
- match global types with networks bypassing projection (decidable type-checking)
- give well-formedness conditions on global types to ensure good properties

$$G ::=_{\rho} pq!\{\lambda_i; G_i\}_{i \in I} | pq?\{\lambda_i; G_i\}_{i \in I} | End$$

- $pq!\{\lambda_i; G_i\}_{i\in I} = \text{output choice } (p \text{ sends to } q \text{ a label } \lambda_i)$
- pq? $\{\lambda_i; G_i\}_{i \in I}$ = input choice (q receives from p a label λ_i)
- End = termination

The active participants of a global type, players, are:

players(p q!
$$\{\lambda_i; G_i\}_{i \in I}$$
) = players(q p? $\{\lambda_i; G_i\}_{i \in I}$) = $\{p\} \cup \bigcup_{i \in I} \text{players}(G_i)$
players(End) = \emptyset

Example

$$G ::=_{\rho} pq!\{\lambda_i; G_i\}_{i\in I} \mid pq?\{\lambda_i; G_i\}_{i\in I} \mid End$$

- $pq!\{\lambda_i; G_i\}_{i\in I} = \text{output choice } (p \text{ sends to } q \text{ a label } \lambda_i)$
- pq? $\{\lambda_i; G_i\}_{i \in I} = \text{input choice } (\text{q receives from p a label } \lambda_i)$
- End = termination

The active participants of a global type, players, are:

$$\begin{aligned} \mathsf{players}(\mathsf{p}\,\mathsf{q}! \{\lambda_i; \mathsf{G}_i\}_{i \in I}) &= \mathsf{players}(\mathsf{q}\,\mathsf{p}? \{\lambda_i; \mathsf{G}_i\}_{i \in I}) = \{\mathsf{p}\} \cup \bigcup_{i \in I} \mathsf{players}(\mathsf{G}_i) \\ & \mathsf{players}(\mathsf{End}) = \emptyset \end{aligned}$$

Example

$$G ::=_{\rho} pq!\{\lambda_i; G_i\}_{i\in I} \mid pq?\{\lambda_i; G_i\}_{i\in I} \mid End$$

- $pq!\{\lambda_i; G_i\}_{i \in I} = \text{output choice} (p \text{ sends to } q \text{ a label } \lambda_i)$
- pq? $\{\lambda_i; G_i\}_{i \in I} = \text{input choice} (q \text{ receives from p a label } \lambda_i)$
- End = termination

The active participants of a global type, players, are:

$$\begin{aligned} \mathsf{players}(\mathsf{p}\,\mathsf{q}! \{\lambda_i; \mathsf{G}_i\}_{i \in I}) &= \mathsf{players}(\mathsf{q}\,\mathsf{p}? \{\lambda_i; \mathsf{G}_i\}_{i \in I}) = \{\mathsf{p}\} \cup \bigcup_{i \in I} \mathsf{players}(\mathsf{G}_i) \\ & \mathsf{players}(\mathsf{End}) = \emptyset \end{aligned}$$

Example

$$G ::=_{\rho} pq!\{\lambda_i; G_i\}_{i\in I} \mid pq?\{\lambda_i; G_i\}_{i\in I} \mid End$$

- $pq!\{\lambda_i; G_i\}_{i\in I} =$ output choice $(p \text{ sends to } q \text{ a label } \lambda_i)$
- pq? $\{\lambda_i; G_i\}_{i \in I} = \text{input choice } (\text{q receives from p a label } \lambda_i)$
- End = termination

The active participants of a global type, players, are:

$$\begin{aligned} \mathsf{players}(\mathsf{p}\,\mathsf{q}! \{\lambda_i; \mathsf{G}_i\}_{i \in I}) &= \mathsf{players}(\mathsf{q}\,\mathsf{p}? \{\lambda_i; \mathsf{G}_i\}_{i \in I}) = \{\mathsf{p}\} \cup \bigcup_{i \in I} \mathsf{players}(\mathsf{G}_i) \\ & \mathsf{players}(\mathsf{End}) = \emptyset \end{aligned}$$

Example

$$G ::=_{\rho} pq!\{\lambda_i; G_i\}_{i\in I} \mid pq?\{\lambda_i; G_i\}_{i\in I} \mid End$$

- $pq!\{\lambda_i; G_i\}_{i\in I} =$ output choice $(p \text{ sends to } q \text{ a label } \lambda_i)$
- $p q? \{\lambda_i; G_i\}_{i \in I} = input choice (q receives from p a label <math>\lambda_i$)
- End = termination

The active participants of a global type, players, are:

$$\begin{aligned} \mathsf{players}(\mathsf{p}\,\mathsf{q}! \{\lambda_i; \mathsf{G}_i\}_{i \in I}) &= \mathsf{players}(\mathsf{q}\,\mathsf{p}? \{\lambda_i; \mathsf{G}_i\}_{i \in I}) = \{\mathsf{p}\} \cup \bigcup_{i \in I} \mathsf{players}(\mathsf{G}_i) \\ & \mathsf{players}(\mathsf{End}) = \emptyset \end{aligned}$$

Example

$$G ::=_{\rho} pq!\{\lambda_i; G_i\}_{i\in I} \mid pq?\{\lambda_i; G_i\}_{i\in I} \mid End$$

- $pq!\{\lambda_i; G_i\}_{i\in I} =$ output choice $(p \text{ sends to } q \text{ a label } \lambda_i)$
- $p q? \{\lambda_i; G_i\}_{i \in I} = input choice (q receives from p a label <math>\lambda_i$)
- End = termination

The active participants of a global type, players, are:

$$\begin{aligned} \mathsf{players}(\mathsf{p}\,\mathsf{q}! \{\lambda_i; \mathsf{G}_i\}_{i \in I}) &= \mathsf{players}(\mathsf{q}\,\mathsf{p}? \{\lambda_i; \mathsf{G}_i\}_{i \in I}) = \{\mathsf{p}\} \cup \bigcup_{i \in I} \mathsf{players}(\mathsf{G}_i) \\ & \mathsf{players}(\mathsf{End}) = \emptyset \end{aligned}$$

Example

$$G ::=_{\rho} pq!\{\lambda_i; G_i\}_{i\in I} \mid pq?\{\lambda_i; G_i\}_{i\in I} \mid End$$

- $pq!\{\lambda_i; G_i\}_{i \in I} = \text{output choice} (p \text{ sends to } q \text{ a label } \lambda_i)$
- $p q? \{\lambda_i; G_i\}_{i \in I} = input choice (q receives from p a label <math>\lambda_i$)
- End = termination

The active participants of a global type, players, are:

$$\begin{aligned} \mathsf{players}(\mathsf{p}\,\mathsf{q}! \{\lambda_i; \mathsf{G}_i\}_{i \in I}) &= \mathsf{players}(\mathsf{q}\,\mathsf{p}? \{\lambda_i; \mathsf{G}_i\}_{i \in I}) = \{\mathsf{p}\} \cup \bigcup_{i \in I} \mathsf{players}(\mathsf{G}_i) \\ \mathsf{players}(\mathsf{End}) &= \emptyset \end{aligned}$$

Exampl

$$G ::=_{\rho} pq!\{\lambda_i; G_i\}_{i\in I} \mid pq?\{\lambda_i; G_i\}_{i\in I} \mid End$$

- $pq!\{\lambda_i; G_i\}_{i \in I} = \text{output choice} (p \text{ sends to } q \text{ a label } \lambda_i)$
- $p q? \{\lambda_i; G_i\}_{i \in I} = input choice (q receives from p a label <math>\lambda_i$)
- End = termination

The active participants of a global type, players, are:

$$\begin{aligned} \mathsf{players}(\mathsf{p}\,\mathsf{q}! \{\lambda_i; \mathsf{G}_i\}_{i \in I}) &= \mathsf{players}(\mathsf{q}\,\mathsf{p}? \{\lambda_i; \mathsf{G}_i\}_{i \in I}) = \{\mathsf{p}\} \cup \bigcup_{i \in I} \mathsf{players}(\mathsf{G}_i) \\ &\mathsf{players}(\mathsf{End}) = \emptyset \end{aligned}$$

Example

$$[\mathsf{End}] \frac{}{\mathsf{End} \vdash \mathsf{p}[\![\, 0\,]\!]}$$

$$[Out] = \frac{G_i \vdash p[\![P_i]\!] \parallel \mathbb{N} \qquad \mathsf{players}(G_i) = \mathsf{players}(\mathsf{p}[\![P_i]\!] \parallel \mathbb{N}) \quad \forall i \in I}{\mathsf{p}[\![q! \{\lambda_i; G_i\}_{i \in I} \vdash \mathsf{p}[\![q! \{\lambda_i; P_i\}_{i \in I}]\!] \parallel \mathbb{N}]}$$

$$[\ln] \frac{\mathsf{G}_i \vdash \mathsf{p} \llbracket P_i \rrbracket \parallel \mathbb{N} \quad \mathsf{players}(\mathsf{G}_i) = \mathsf{players}(\mathsf{p} \llbracket P_i \rrbracket \parallel \mathbb{N}) \ \, \forall i \in I}{\mathsf{q} \, \mathsf{p}? \{\lambda_i; \, \mathsf{G}_i\}_{i \in I} \vdash \mathsf{p} \llbracket \, \mathsf{q}? \{\lambda_j; \, P_j\}_{j \in J} \, \rrbracket \parallel \mathbb{N}} \quad I \subseteq J$$

- Standard subtyping for input choices is incorporated in Rule [In
- No need for subtyping in Rule [Out], since no expressivity is lost.

$$[\mathsf{End}] = \hspace{-1mm} = \hspace{-$$

$$[\mathsf{Out}] \ \frac{\mathsf{G}_i \vdash \mathsf{p} \llbracket P_i \rrbracket \parallel \mathbb{N} \quad \mathsf{players}(\mathsf{G}_i) = \mathsf{players}(\mathsf{p} \llbracket P_i \rrbracket \parallel \mathbb{N}) \ \ \forall i \in I}{\mathsf{p} \, \mathsf{q} ! \{\lambda_i; \mathsf{G}_i\}_{i \in I} \vdash \mathsf{p} \llbracket \, \mathsf{q} ! \{\lambda_i; P_i\}_{i \in I} \, \rrbracket \parallel \mathbb{N}}$$

$$[\ln] \frac{\mathsf{G}_i \vdash \mathsf{p} \llbracket P_i \rrbracket \parallel \mathbb{N} \quad \mathsf{players}(\mathsf{G}_i) = \mathsf{players}(\mathsf{p} \llbracket P_i \rrbracket \parallel \mathbb{N}) \quad \forall i \in I}{\mathsf{q} \, \mathsf{p} ? \{\lambda_i; \mathsf{G}_i\}_{i \in I} \vdash \mathsf{p} \llbracket \mathsf{q} ? \{\lambda_j; P_j\}_{j \in J} \rrbracket \parallel \mathbb{N}} \quad I \subseteq J$$

- Standard subtyping for input choices is incorporated in Rule [In]
- No need for subtyping in Rule [Out] , since no expressivity is lost

Propertie

$$[\mathsf{End}] = \hspace{-1mm} = \hspace{-$$

$$[\mathsf{Out}] \ \frac{\mathsf{G}_i \vdash \mathsf{p} \llbracket P_i \rrbracket \parallel \mathbb{N} \quad \mathsf{players}(\mathsf{G}_i) = \mathsf{players}(\mathsf{p} \llbracket P_i \rrbracket \parallel \mathbb{N}) \ \ \forall i \in I}{\mathsf{p} \, \mathsf{q} ! \{\lambda_i; \mathsf{G}_i\}_{i \in I} \vdash \mathsf{p} \llbracket \, \mathsf{q} ! \{\lambda_i; P_i\}_{i \in I} \rrbracket \parallel \mathbb{N}}$$

$$[\ln] \frac{\mathsf{G}_i \vdash \mathsf{p}\llbracket P_i \rrbracket \parallel \mathbb{N} \qquad \mathsf{players}(\mathsf{G}_i) = \mathsf{players}(\mathsf{p}\llbracket P_i \rrbracket \parallel \mathbb{N}) \quad \forall i \in I}{\mathsf{q} \, \mathsf{p}?\{\lambda_i; \mathsf{G}_i\}_{i \in I} \vdash \mathsf{p}\llbracket \mathsf{q}?\{\lambda_j; P_j\}_{j \in J} \rrbracket \parallel \mathbb{N}} \quad I \subseteq J$$

- Standard subtyping for input choices is incorporated in Rule [In]
- No need for subtyping in Rule [Out] , since no expressivity is lost

$$[\mathsf{End}] = \hspace{-1mm} = \hspace{-$$

$$[\mathsf{Out}] \ \frac{\mathsf{G}_i \vdash \mathsf{p} \llbracket P_i \rrbracket \parallel \mathbb{N} \quad \mathsf{players}(\mathsf{G}_i) = \mathsf{players}(\mathsf{p} \llbracket P_i \rrbracket \parallel \mathbb{N}) \ \ \forall i \in I}{\mathsf{p} \, \mathsf{q} ! \{ \lambda_i ; \mathsf{G}_i \}_{i \in I} \vdash \mathsf{p} \llbracket \, \mathsf{q} ! \{ \lambda_i ; P_i \}_{i \in I} \, \rrbracket \parallel \mathbb{N}}$$

$$[\ln] \frac{\mathsf{G}_i \vdash \mathsf{p} \llbracket P_i \rrbracket \parallel \mathbb{N} \qquad \mathsf{players}(\mathsf{G}_i) = \mathsf{players}(\mathsf{p} \llbracket P_i \rrbracket \parallel \mathbb{N}) \quad \forall i \in I}{\mathsf{q} \, \mathsf{p}?\{\lambda_i; \mathsf{G}_i\}_{i \in I} \vdash \mathsf{p} \llbracket \mathsf{q}?\{\lambda_j; P_j\}_{j \in J} \rrbracket \parallel \mathbb{N}} \quad I \subseteq J$$

- Standard subtyping for input choices is incorporated in Rule [In]
- No need for subtyping in Rule [Out], since no expressivity is lost.

Properties

G ⊢ N is decidable

• for all N there is G such that $G \vdash \mathbb{N}$

$$[\mathsf{End}] = \hspace{-1mm} = \hspace{-$$

$$[\mathsf{Out}] \ \frac{\mathsf{G}_i \vdash \mathsf{p} \llbracket P_i \rrbracket \parallel \mathbb{N} \quad \mathsf{players}(\mathsf{G}_i) = \mathsf{players}(\mathsf{p} \llbracket P_i \rrbracket \parallel \mathbb{N}) \ \ \forall i \in I}{\mathsf{p} \, \mathsf{q} ! \{\lambda_i; \mathsf{G}_i\}_{i \in I} \vdash \mathsf{p} \llbracket \, \mathsf{q} ! \{\lambda_i; P_i\}_{i \in I} \, \rrbracket \parallel \mathbb{N}}$$

$$[\ln] \frac{\mathsf{G}_i \vdash \mathsf{p}\llbracket P_i \rrbracket \parallel \mathbb{N} \qquad \mathsf{players}(\mathsf{G}_i) = \mathsf{players}(\mathsf{p}\llbracket P_i \rrbracket \parallel \mathbb{N}) \quad \forall i \in I}{\mathsf{q} \, \mathsf{p}?\{\lambda_i; \mathsf{G}_i\}_{i \in I} \vdash \mathsf{p}\llbracket \mathsf{q}?\{\lambda_j; P_j\}_{j \in J} \rrbracket \parallel \mathbb{N}} \quad I \subseteq J$$

- Standard subtyping for input choices is incorporated in Rule [In]
- No need for subtyping in Rule [Out] , since no expressivity is lost.

Properties

- G ⊢ N is decidable
- for all \mathbb{N} there is \mathbb{G} such that $\mathbb{G} \vdash \mathbb{N}$

$$[\mathsf{End}] = \overline{ \underbrace{\mathsf{End} \vdash \mathsf{p}[\![\, 0\,]\!]}}$$

$$[\mathsf{Out}] \ \frac{\mathsf{G}_i \vdash \mathsf{p} \llbracket P_i \rrbracket \parallel \mathbb{N} \quad \mathsf{players}(\mathsf{G}_i) = \mathsf{players}(\mathsf{p} \llbracket P_i \rrbracket \parallel \mathbb{N}) \ \ \forall i \in I}{\mathsf{p} \, \mathsf{q} ! \{\lambda_i; \mathsf{G}_i\}_{i \in I} \vdash \mathsf{p} \llbracket \, \mathsf{q} ! \{\lambda_i; P_i\}_{i \in I} \, \rrbracket \parallel \mathbb{N}}$$

$$[\ln] \frac{\mathsf{G}_i \vdash \mathsf{p} \llbracket P_i \rrbracket \parallel \mathbb{N} \qquad \mathsf{players}(\mathsf{G}_i) = \mathsf{players}(\mathsf{p} \llbracket P_i \rrbracket \parallel \mathbb{N}) \quad \forall i \in I}{\mathsf{q} \, \mathsf{p}?\{\lambda_i; \mathsf{G}_i\}_{i \in I} \vdash \mathsf{p} \llbracket \mathsf{q}?\{\lambda_j; P_j\}_{j \in J} \rrbracket \parallel \mathbb{N}} \quad I \subseteq J$$

- Standard subtyping for input choices is incorporated in Rule [In]
- No need for subtyping in Rule [Out] , since no expressivity is lost.

Properties

- G ⊢ N is decidable
- for all N there is G such that $G \vdash N$

$$[\mathsf{End}] = \hspace{-1mm} = \hspace{-$$

$$[\mathsf{Out}] \ \frac{\mathsf{G}_i \vdash \mathsf{p} \llbracket P_i \rrbracket \parallel \mathbb{N} \quad \mathsf{players}(\mathsf{G}_i) = \mathsf{players}(\mathsf{p} \llbracket P_i \rrbracket \parallel \mathbb{N}) \ \ \forall i \in I}{\mathsf{p} \, \mathsf{q} ! \{\lambda_i; \mathsf{G}_i\}_{i \in I} \vdash \mathsf{p} \llbracket \, \mathsf{q} ! \{\lambda_i; P_i\}_{i \in I} \, \rrbracket \parallel \mathbb{N}}$$

$$[\ln] \ \frac{\mathsf{G}_i \vdash \mathsf{p} \llbracket P_i \rrbracket \ \Vert \ \mathbb{N} \qquad \mathsf{players}(\mathsf{G}_i) = \mathsf{players}(\mathsf{p} \llbracket P_i \rrbracket \ \Vert \ \mathbb{N}) \quad \forall i \in I}{\mathsf{q} \ \mathsf{p}?\{\lambda_i; \mathsf{G}_i\}_{i \in I} \vdash \mathsf{p} \llbracket \mathsf{q}?\{\lambda_j; P_j\}_{j \in J} \rrbracket \ \Vert \ \mathbb{N}} \quad I \subseteq J$$

- Standard subtyping for input choices is incorporated in Rule [In]
- No need for subtyping in Rule [Out] , since no expressivity is lost.

Properties

- G ⊢ N is decidable
- for all N there is G such that $G \vdash N$

Problem

assigning a global type to a network does not ensure progresss

Let
$$\mathbb{N}=p\llbracket q\,!\,\lambda_1\,\rrbracket \ \|\ q\llbracket\,p\,?\,\lambda_2\,\rrbracket$$
 and $\mathsf{G}=p\,q\,!\,\lambda_1;\,p\,q\,?\,\lambda_2$
$$\mathsf{G}\vdash \mathbb{N}$$

 $\mathbb{N}\parallel\emptyset$ is deadlocked and λ_1 is an orphan message

need for well-formedness conditions on global types

- $pq?\lambda$; End $||\langle p, \lambda, q \rangle|$ is well-formed
- pq? λ ; End $\parallel \emptyset$ is NOT well-formed

well-formedness depends on the queue ${\mathcal M}$

Problem

assigning a global type to a network does not ensure progress

Let
$$\mathbb{N} = p[\![q!\lambda_1]\!] \parallel q[\![p?\lambda_2]\!]$$
 and $G = pq!\lambda_1; pq?\lambda_2$

$$G \vdash \mathbb{N}$$

 $\mathbb{N}\parallel\emptyset$ is deadlocked and λ_1 is an orphan message

need for well-formedness conditions on global type:

- $pq?\lambda$; End $\|\langle p, \lambda, q \rangle$ is well-formed
- ullet p q? λ ; End $\parallel\emptyset$ is NOT well-formed

well-formedness depends on the queue ${\cal M}$

Problem

assigning a global type to a network does not ensure progress

Let
$$\mathbb{N} = p[\![q!\lambda_1]\!] \parallel q[\![p?\lambda_2]\!]$$
 and $G = pq!\lambda_1; pq?\lambda_2$

$$G \vdash \mathbb{N}$$

 $\mathbb{N} \parallel \emptyset$ is deadlocked and λ_1 is an orphan message

need for well-formedness conditions on global types

- pq? λ ; End $\|\langle p, \lambda, q \rangle$ is well-formed
- $pq?\lambda$; End $\parallel \emptyset$ is NOT well-formed

well-formedness depends on the queue ${\mathcal M}$

Problem

assigning a global type to a network does not ensure progress

Let
$$\mathbb{N} = p[\![q! \lambda_1]\!] \parallel q[\![p? \lambda_2]\!]$$
 and $G = pq! \lambda_1; pq? \lambda_2$

 $G \vdash \mathbb{N}$

 $\mathbb{N} \parallel \emptyset$ is deadlocked and λ_1 is an orphan message

need for well-formedness conditions on global types

- pq? λ ; End $\|\langle p, \lambda, q \rangle$ is well-formed
- pq $?\lambda$; End $\parallel \emptyset$ is NOT well-formed

well-formedness depends on the queue ${\mathcal M}$

Problem

assigning a global type to a network does not ensure progress

Let
$$\mathbb{N} = p\llbracket q \, ! \, \lambda_1 \rrbracket \parallel q\llbracket \, p \, ? \, \lambda_2 \rrbracket$$
 and $G = p \, q \, ! \, \lambda_1; \, p \, q \, ? \, \lambda_2$

 $G \vdash \mathbb{N}$

 $\mathbb{N} \parallel \emptyset$ is deadlocked and λ_1 is an orphan message

need for well-formedness conditions on global types

- $\bullet \ \ \mathsf{p}\,\mathsf{q}?\lambda;\mathsf{End} \parallel \langle \mathsf{p},\lambda,\mathsf{q}\rangle \quad \ \mathsf{is well-formed}$
- pq? λ ; End $\parallel \emptyset$ is NOT well-formed

well-formedness depends on the queue ${\cal M}$

Problem

assigning a global type to a network does not ensure progress

Let
$$\mathbb{N} = p[\![q! \lambda_1]\!] \parallel q[\![p? \lambda_2]\!]$$
 and $G = pq! \lambda_1; pq? \lambda_2$

 $G \vdash \mathbb{N}$

 $\mathbb{N} \parallel \emptyset$ is deadlocked and λ_1 is an orphan message

need for well-formedness conditions on global types

- $\bullet \ \ \mathsf{p}\,\mathsf{q}?\lambda;\mathsf{End} \parallel \langle \mathsf{p},\lambda,\mathsf{q}\rangle \quad \ \mathsf{is well-formed}$
- pq $?\lambda$; End $\parallel\emptyset$ is NOT well-formed

well-formedness depends on the queue ${\cal M}$

Problem

assigning a global type to a network does not ensure progress

Let
$$\mathbb{N} = p[[q!\lambda_1]] \parallel q[[p?\lambda_2]]$$
 and $G = pq!\lambda_1; pq?\lambda_2$

 $G \vdash \mathbb{N}$

 $\mathbb{N} \parallel \emptyset$ is deadlocked and λ_1 is an orphan message

need for well-formedness conditions on global types

- $\bullet \ \ \mathsf{p}\,\mathsf{q}?\lambda;\mathsf{End} \parallel \langle \mathsf{p},\lambda,\mathsf{q}\rangle \quad \ \mathsf{is well-formed}$
- pq $?\lambda$; End $\parallel\emptyset$ is NOT well-formed

well-formedness depends on the queue ${\mathcal M}$

A type configuration $G \parallel \mathcal{M}$ is well-formed if

- G is bounded
- ullet G \parallel $\mathcal M$ is balanced , i.e.,
 - at least one of the labels of every input choice of G is matched by either a message in M or a preceding output in G
 - every message in M will be eventually read by G.

Theorem

A type configuration $G \parallel \mathcal{M}$ is well-formed if

- G is bounded
- ullet G \parallel $\mathcal M$ is balanced , i.e.,
 - at least one of the labels of every input choice of G is matched by either a message in M or a preceding output in G
 - every message in M will be eventually read by G.

If $G \vdash \mathbb{N}$ for some G and $G \Vdash M$ is well-formed, then $\mathbb{N} \Vdash M$ has the

A type configuration $G \parallel \mathcal{M}$ is well-formed if

- G is bounded
- ullet G $\parallel \mathcal{M}$ is balanced , i.e.,
 - at least one of the labels of every input choice of G is matched by either a message in $\mathcal M$ or a preceding output in G
 - ullet every message in ${\mathcal M}$ will be eventually read by ${\sf G}.$

Theorer

A type configuration $G \parallel \mathcal{M}$ is well-formed if

- G is bounded
- $G \parallel \mathcal{M}$ is balanced, i.e.,
 - at least one of the labels of every input choice of G is matched by either a message in \mathcal{M} or a preceding output in G
 - \bullet every message in \mathcal{M} will be eventually read by G .

A type configuration $G \parallel \mathcal{M}$ is well-formed if

- G is bounded
- ullet G $\parallel \mathcal{M}$ is balanced , i.e.,
 - at least one of the labels of every input choice of G is matched by either a message in $\mathcal M$ or a preceding output in G
 - ullet every message in ${\mathcal M}$ will be eventually read by G.

A type configuration $G \parallel \mathcal{M}$ is well-formed if

- G is bounded
- ullet G $\parallel \mathcal{M}$ is balanced , i.e.,
 - at least one of the labels of every input choice of G is matched by either a message in M or a preceding output in G
 - ullet every message in ${\mathcal M}$ will be eventually read by G.

Theorem

A type configuration $G \parallel \mathcal{M}$ is well-formed if

- G is bounded
- ullet G $\parallel \mathcal{M}$ is balanced , i.e.,
 - at least one of the labels of every input choice of G is matched by either a message in M or a preceding output in G
 - ullet every message in ${\mathcal M}$ will be eventually read by G.

Theorem

Checking Well-formedness

Balancing is undecidable.

- We defined a decidable restriction of weak balancing that allows to type multiparty sessions that are not typable by other decidable restrictions of asynchronous typing⁴
- We can type the running example of ⁴
- However, we do not wether there is an example typable in ⁴ which is not typable in our system!

⁴ M. Bravetti, M. Carbone, J. Lange, N. Yoshida, G. Zavattaro: A Sound Algorithm for Asynchronous

Checking Well-formedness

- Balancing is undecidable.
- We defined a decidable restriction of weak balancing that allows to type multiparty sessions that are not typable by other decidable restrictions of asynchronous typing⁴
- We can type the running example of ⁴
- However, we do not wether there is an example typable in ⁴ which is not typable in our system!

⁴ M. Bravetti, M. Carbone, J. Lange, N. Yoshida, G. Zavattaro: A Sound Algorithm for Asynchronous So Subtyping. CONCUR 2019

Checking Well-formedness

- Balancing is undecidable.
- We defined a decidable restriction of weak balancing that allows to type multiparty sessions that are not typable by other decidable restrictions of asynchronous typing⁴
- We can type the running example of ⁴
- However, we do not wether there is an example typable in ⁴ which is not typable in our system!

⁴ M. Bravetti, M. Carbone, J. Lange, N. Yoshida, G. Zavattaro: A Sound Algorithm for Asynchronous So Subtyping. CONCUR 2019

Checking Well-formedness

- Balancing is undecidable.
- We defined a decidable restriction of weak balancing that allows to type multiparty sessions that are not typable by other decidable restrictions of asynchronous typing⁴
- We can type the running example of ⁴
- However, we do not wether there is an example typable in ⁴ which is not typable in our system!

⁴ M. Bravetti, M. Carbone, J. Lange, N. Yoshida, G. Zavattaro: A Sound Algorithm for Asynchronous Soutyping. CONCUR 2019

Index

1 Introduction to Multiparty Session Types

- 2 Asynchronous Global Types
- 3 Conclusions

- a new formalism of global types splitting outputs and inputs
- a decidable type-checking for asynchronous sessions
- an algorithm ensuring well-formedness of type configurations
- a prototype implementation in co-logic programming of a preliminary version of the type system

- a new formalism of global types splitting outputs and inputs
- a decidable type-checking for asynchronous sessions
- an algorithm ensuring well-formedness of type configurations
- a prototype implementation in co-logic programming of a preliminary version of the type system

- a new formalism of global types splitting outputs and inputs
- a decidable type-checking for asynchronous sessions
- an algorithm ensuring well-formedness of type configurations
- a prototype implementation in co-logic programming of a preliminary version of the type system

- a new formalism of global types splitting outputs and inputs
- a decidable type-checking for asynchronous sessions
- an algorithm ensuring well-formedness of type configurations
- a prototype implementation in co-logic programming of a preliminary version of the type system

- reversible multiparty sessions (with also optional participants [2])
 - I. Castellani, M. Dezani-Ciancaglini, P. Giannini: Concurrent Reversible Sessions. CONCUR 2017.
 - [2] I. Castellani, M. Dezani-Ciancaglini, P. Giannini: Reversible sessions with flexible choices. Acta Informatica 2019.
- delegation
 - [3] I. Castellani, M. Dezani-Ciancaglini, P. Giannini, R. Horne: Global types with internal delegation. Theoretical Computer Science 2020.
- asynchronous global types (preliminary version of those described here)
 [4] F. Dagnino, P. Giannini, M. Dezani-Ciancaglini: Deconfined Global Types for Asynchronous Sessions. COORDINATION 2021.
- processes with input races
 - [5] I. Castellani, M. Dezani-Ciancaglini, P. Giannini: Asynchronous Sessions with Input Races. PLACES@ETAPS 2022
- a tool for multiparty-session-types coordination for core Erlang
 - [6] L. Egidi , P. Giannini, L. Ventura: Multiparty-session-types coordination for core Erlang ICSOFT 2022

- reversible multiparty sessions (with also optional participants [2])
 [1] I. Castellani, M. Dezani-Ciancaglini, P. Giannini: Concurrent Reversible Sessions. CONCUR 2017.
 - [2] I. Castellani, M. Dezani-Ciancaglini, P. Giannini: Reversible sessions with flexible choices. Acta Informatica 2019.
- delegation
 - [3] I. Castellani, M. Dezani-Ciancaglini, P. Giannini, R. Horne: Global types with internal delegation. Theoretical Computer Science 2020.
- asynchronous global types (preliminary version of those described here)
 [4] F. Dagnino, P. Giannini, M. Dezani-Ciancaglini: Deconfined Global Types for Asynchronous Sessions. COORDINATION 2021.
- processes with input races
 [5] I. Castellani, M. Dezani-Ciancaglini, P. Giannini: Asynchronous Sessions with Input Races. PLACES@ETAPS 2022
- a tool for multiparty-session-types coordination for core Erlang
 [6] L. Egidi , P. Giannini, L. Ventura: Multiparty-session-types coordination for core Erlang. ICSOFT 2022.

- reversible multiparty sessions (with also optional participants [2])
 [1] I. Castellani, M. Dezani-Ciancaglini, P. Giannini: Concurrent Reversible Sessions. CONCUR 2017.
 - [2] I. Castellani, M. Dezani-Ciancaglini, P. Giannini: Reversible sessions with flexible choices. Acta Informatica 2019.
- delegation
 - [3] I. Castellani, M. Dezani-Ciancaglini, P. Giannini, R. Horne: Global types with internal delegation. Theoretical Computer Science 2020.
- asynchronous global types (preliminary version of those described here)
 [4] F. Dagnino, P. Giannini, M. Dezani-Ciancaglini: Deconfined Global Types for Asynchronous Sessions. COORDINATION 2021.
- processes with input races
 [5] I. Castellani, M. Dezani-Ciancaglini, P. Giannini: Asynchronous Sessions with Input Races. PLACES@ETAPS 2022
- a tool for multiparty-session-types coordination for core Erlang
 [6] L. Egidi , P. Giannini, L. Ventura: Multiparty-session-types coordination for core Erlang. ICSOFT 2022.

- reversible multiparty sessions (with also optional participants [2])
 [1] I. Castellani, M. Dezani-Ciancaglini, P. Giannini: Concurrent Reversible Sessions. CONCUR 2017.
 - [2] I. Castellani, M. Dezani-Ciancaglini, P. Giannini: Reversible sessions with flexible choices. Acta Informatica 2019.
- delegation
 - [3] I. Castellani, M. Dezani-Ciancaglini, P. Giannini, R. Horne: Global types with internal delegation. Theoretical Computer Science 2020.
- asynchronous global types (preliminary version of those described here)
 [4] F. Dagnino, P. Giannini, M. Dezani-Ciancaglini: Deconfined Global Types for Asynchronous Sessions. COORDINATION 2021.
- processes with input races
 [5] I. Castellani, M. Dezani-Ciancaglini, P. Giannini: Asynchronous Sessions with Input Races. PLACES@ETAPS 2022
- a tool for multiparty-session-types coordination for core Erlang
 [6] L. Egidi , P. Giannini, L. Ventura: Multiparty-session-types coordination for core Erlang. ICSOFT 2022.

- reversible multiparty sessions (with also optional participants [2])
 [1] I. Castellani, M. Dezani-Ciancaglini, P. Giannini: Concurrent Reversible Sessions. CONCUR 2017.
 - [2] I. Castellani, M. Dezani-Ciancaglini, P. Giannini: Reversible sessions with flexible choices. Acta Informatica 2019.
- delegation
 - [3] I. Castellani, M. Dezani-Ciancaglini, P. Giannini, R. Horne: Global types with internal delegation. Theoretical Computer Science 2020.
- asynchronous global types (preliminary version of those described here)
 [4] F. Dagnino, P. Giannini, M. Dezani-Ciancaglini: Deconfined Global Types for Asynchronous Sessions. COORDINATION 2021.
- processes with input races
 [5] I. Castellani, M. Dezani-Ciancaglini, P. Giannini: Asynchronous Sessions with Input Races. PLACES@ETAPS 2022
- a tool for multiparty-session-types coordination for core Erlang
 [6] L. Egidi , P. Giannini, L. Ventura: Multiparty-session-types coordination for core Erlang. ICSOFT 2022.

- reversible multiparty sessions (with also optional participants [2])
 [1] I. Castellani, M. Dezani-Ciancaglini, P. Giannini: Concurrent Reversible Sessions. CONCUR 2017.
 - [2] I. Castellani, M. Dezani-Ciancaglini, P. Giannini: Reversible sessions with flexible choices. Acta Informatica 2019.
- delegation
 - [3] I. Castellani, M. Dezani-Ciancaglini, P. Giannini, R. Horne: Global types with internal delegation. Theoretical Computer Science 2020.
- asynchronous global types (preliminary version of those described here)
 [4] F. Dagnino, P. Giannini, M. Dezani-Ciancaglini: Deconfined Global Types for Asynchronous Sessions. COORDINATION 2021.
- processes with input races
 [5] I. Castellani, M. Dezani-Ciancaglini, P. Giannini: Asynchronous Sessions with Input Races. PLACES@ETAPS 2022
- a tool for multiparty-session-types coordination for core Erlang
 [6] L. Egidi , P. Giannini, L. Ventura: Multiparty-session-types coordination for core Erlang. ICSOFT 2022.

Use of global types in T-Ladies

- Coordination of IoT applications
- Are there properties of IoT applications we may want to enforce ?
- Multiparty-session-types coordination for JadeScript (we did it for Erlang!)

Use of global types in T-Ladies

- Coordination of IoT applications
- Are there properties of IoT applications we may want to enforce ?
- Multiparty-session-types coordination for JadeScript (we did it for Erlang!)

Use of global types in T-Ladies

- Coordination of IoT applications
- Are there properties of IoT applications we may want to enforce?
- Multiparty-session-types coordination for JadeScript (we did it for Erlang!)

