
Incremental

Variability

Models

Luca Favalli

LPL

Language Families

Problem

Bottom-up

LPL

Overview

Abstract Syntax

Concrete Syntax

Semantics

Language Feature

Composition

Model Update

Conclusion

Slide 1 of 15

Incremental Variability Models

for Language Composition Inference

Luca Favalli

Università degli Studi di Milano

Computer Science Department

@T-LADIES kick-off meeting

Pisa, July 7th 2022

Joint work with Walter Cazzola



Incremental

Variability

Models

Luca Favalli

LPL

Language Families

Problem

Bottom-up

LPL

Overview

Abstract Syntax

Concrete Syntax

Semantics

Language Feature

Composition

Model Update

Conclusion

Slide 2 of 15

Language Product Lines
Language Families

Multiple variants of GPLs and ever more DSLs.

Examples of language families:

– OCL variants [Wende et al. 2009]

– Javascript subsets for teaching [Cazzola and Olivares 2016]

– VML* for variability management [Zschaler et al. 2009]

– Role-based Programming Languages [Kühn and Cazzola 2016]



Incremental

Variability

Models

Luca Favalli

LPL

Language Families

Problem

Bottom-up

LPL

Overview

Abstract Syntax

Concrete Syntax

Semantics

Language Feature

Composition

Model Update

Conclusion

Slide 3 of 15

Language Product Lines

Language product lines (LPLs)

– Create language variants by choosing and picking language features.

– Resulting compilers/interpreters are products of a special software

product line composing language components.

– Language variants are products of a language product lines.

– Multiple language development tools support LPLs

– Melange, Monticore, Neverlang



Incremental

Variability

Models

Luca Favalli

LPL

Language Families

Problem

Bottom-up

LPL

Overview

Abstract Syntax

Concrete Syntax

Semantics

Language Feature

Composition

Model Update

Conclusion

Slide 4 of 15

Language Product Lines
Language Families

Language Families are often modeled in terms of their features

using a variability model, according to formalisms such as the

feature model

root

expression

literal

MulExpr

DivExpr

LiteralExpr

AddExpr

IntLiteral

FloatLiteral

Example:

– (part of) the expression

languages family



Incremental

Variability

Models

Luca Favalli

LPL

Language Families

Problem

Bottom-up

LPL

Overview

Abstract Syntax

Concrete Syntax

Semantics

Language Feature

Composition

Model Update

Conclusion

Slide 5 of 15

Language Product Lines
Problem

Benefits

– Modular language design

– Opportunistic reuse

– Extensibility

– Implementation-agnostic

language deployment

– Language-oriented

programming

Limitations

– Language composition is

complex

– Huge configuration space

– Dependency management

– Feature reuse outside

the originally intended

application

. . . but must importantly languages can express variability along

three dimensions!

– Abstract syntax

– constructs

– abstractions

– Concrete syntax

– textual

– graphical

– Semantics

– evaluation

– translation



Incremental

Variability

Models

Luca Favalli

LPL

Language Families

Problem

Bottom-up

LPL

Overview

Abstract Syntax

Concrete Syntax

Semantics

Language Feature

Composition

Model Update

Conclusion

Slide 6 of 15

Language Product Lines
Problem

Describing all three dimensions upfront in a top-down approach
is not feasible.

– Steep barrier to entry

– Error-prone

– Alignment between model and implementation

– Feature traceability

– Extending the implementations requires rewriting the model first



Incremental

Variability

Models

Luca Favalli

LPL

Language Families

Problem

Bottom-up

LPL

Overview

Abstract Syntax

Concrete Syntax

Semantics

Language Feature

Composition

Model Update

Conclusion

Slide 7 of 15

Bottom-up Language Product Line Engineering
Overview

Develop the variability model bottom-up and incrementally.

1. Implement the abstract syntax, concrete syntax and semantics of

the language family

2. Extract the abstract syntax variability model from the abstract

syntax implementation

3. Configure the concrete syntax using the variability model

4. Extract the language grammar

5. Configure the grammar with its semantics while solving any

semantic dependencies using pre-conditions and post-conditions

6. Compose abstract syntax, concrete syntax and semantics into a

language feature

7. Increment the variability model with the newly created language

features

Configuration and modeling activities coexist in the same

process.



Incremental

Variability

Models

Luca Favalli

LPL

Language Families

Problem

Bottom-up

LPL

Overview

Abstract Syntax

Concrete Syntax

Semantics

Language Feature

Composition

Model Update

Conclusion

Slide 8 of 15

Bottom-up Language Product Line Engineering
Extract the variability model from the abstract syntax

root

expression

literal

MulExpr

DivExpr

LiteralExpr

AddExpr

IntLiteral

FloatLiteral



Incremental

Variability

Models

Luca Favalli

LPL

Language Families

Problem

Bottom-up

LPL

Overview

Abstract Syntax

Concrete Syntax

Semantics

Language Feature

Composition

Model Update

Conclusion

Slide 9 of 15

Bottom-up Language Product Line Engineering
Configure the concrete syntax and extract the grammar

root

expression

literal

MulExpr

DivExpr

LiteralExpr

AddExpr

IntLiteral

FloatLiteral

Grammar



Incremental

Variability

Models

Luca Favalli

LPL

Language Families

Problem

Bottom-up

LPL

Overview

Abstract Syntax

Concrete Syntax

Semantics

Language Feature

Composition

Model Update

Conclusion

Slide 10 of 15

Bottom-up Language Product Line Engineering
Configure the concrete syntax and extract the grammar

S ← Expr

Expr ← Expr “+” Expr Expr ← Expr “*” Expr

Expr ← Number

Number ← [0-9]+

Grammar



Incremental

Variability

Models

Luca Favalli

LPL

Language Families

Problem

Bottom-up

LPL

Overview

Abstract Syntax

Concrete Syntax

Semantics

Language Feature

Composition

Model Update

Conclusion

Slide 11 of 15

Bottom-up Language Product Line Engineering
Configure the language semantics

S ← Expr

Expr ← Expr “+” Expr Expr ← Expr “*” Expr

Expr ← Number

Number ← [0-9]+



Incremental

Variability

Models

Luca Favalli

LPL

Language Families

Problem

Bottom-up

LPL

Overview

Abstract Syntax

Concrete Syntax

Semantics

Language Feature

Composition

Model Update

Conclusion

Slide 11 of 15

Bottom-up Language Product Line Engineering
Configure the language semantics

S ← Expr

Expr ← Expr “+” Expr Expr ← Expr “*” Expr

Expr ← Number

Number ← [0-9]+



Incremental

Variability

Models

Luca Favalli

LPL

Language Families

Problem

Bottom-up

LPL

Overview

Abstract Syntax

Concrete Syntax

Semantics

Language Feature

Composition

Model Update

Conclusion

Slide 11 of 15

Bottom-up Language Product Line Engineering
Configure the language semantics

S ← Expr

Expr ← Expr “+” Expr Expr ← Expr “*” Expr

Expr ← Number

Number ← [0-9]+

requires value : int



Incremental

Variability

Models

Luca Favalli

LPL

Language Families

Problem

Bottom-up

LPL

Overview

Abstract Syntax

Concrete Syntax

Semantics

Language Feature

Composition

Model Update

Conclusion

Slide 11 of 15

Bottom-up Language Product Line Engineering
Configure the language semantics

S ← Expr

Expr ← Expr “+” Expr Expr ← Expr “*” Expr

Expr ← Number

Number ← [0-9]+

requires value : int



Incremental

Variability

Models

Luca Favalli

LPL

Language Families

Problem

Bottom-up

LPL

Overview

Abstract Syntax

Concrete Syntax

Semantics

Language Feature

Composition

Model Update

Conclusion

Slide 11 of 15

Bottom-up Language Product Line Engineering
Configure the language semantics

S ← Expr

Expr ← Expr “+” Expr Expr ← Expr “*” Expr

Expr ← Number

Number ← [0-9]+

requires value : int

provides value : int

requires value : int



Incremental

Variability

Models

Luca Favalli

LPL

Language Families

Problem

Bottom-up

LPL

Overview

Abstract Syntax

Concrete Syntax

Semantics

Language Feature

Composition

Model Update

Conclusion

Slide 11 of 15

Bottom-up Language Product Line Engineering
Configure the language semantics

S ← Expr

Expr ← Expr “+” Expr Expr ← Expr “*” Expr

Expr ← Number

Number ← [0-9]+

requires value : int

provides value : int

requires value : int



Incremental

Variability

Models

Luca Favalli

LPL

Language Families

Problem

Bottom-up

LPL

Overview

Abstract Syntax

Concrete Syntax

Semantics

Language Feature

Composition

Model Update

Conclusion

Slide 11 of 15

Bottom-up Language Product Line Engineering
Configure the language semantics

S ← Expr

Expr ← Expr “+” Expr Expr ← Expr “*” Expr

Expr ← Number

Number ← [0-9]+

requires value : int

provides value : int

requires value : int

provides value : int

requires value : int



Incremental

Variability

Models

Luca Favalli

LPL

Language Families

Problem

Bottom-up

LPL

Overview

Abstract Syntax

Concrete Syntax

Semantics

Language Feature

Composition

Model Update

Conclusion

Slide 11 of 15

Bottom-up Language Product Line Engineering
Configure the language semantics

S ← Expr

Expr ← Expr “+” Expr Expr ← Expr “*” Expr

Expr ← Number

Number ← [0-9]+

requires value : int

provides value : int

requires value : int

provides value : int

requires value : int



Incremental

Variability

Models

Luca Favalli

LPL

Language Families

Problem

Bottom-up

LPL

Overview

Abstract Syntax

Concrete Syntax

Semantics

Language Feature

Composition

Model Update

Conclusion

Slide 11 of 15

Bottom-up Language Product Line Engineering
Configure the language semantics

S ← Expr

Expr ← Expr “+” Expr Expr ← Expr “*” Expr

Expr ← Number

Number ← [0-9]+

requires value : int

provides value : int

requires value : int

provides value : int

requires value : int

provides value : int

requires type : class



Incremental

Variability

Models

Luca Favalli

LPL

Language Families

Problem

Bottom-up

LPL

Overview

Abstract Syntax

Concrete Syntax

Semantics

Language Feature

Composition

Model Update

Conclusion

Slide 11 of 15

Bottom-up Language Product Line Engineering
Configure the language semantics

S ← Expr

Expr ← Expr “+” Expr Expr ← Expr “*” Expr

Expr ← Number

Number ← [0-9]+

requires value : int

provides value : int

requires value : int

provides value : int

requires value : int

provides value : int



Incremental

Variability

Models

Luca Favalli

LPL

Language Families

Problem

Bottom-up

LPL

Overview

Abstract Syntax

Concrete Syntax

Semantics

Language Feature

Composition

Model Update

Conclusion

Slide 11 of 15

Bottom-up Language Product Line Engineering
Configure the language semantics

S ← Expr

Expr ← Expr “+” Expr Expr ← Expr “*” Expr

Expr ← Number

Number ← [0-9]+

requires value : int

provides value : int

requires value : int

provides value : int

requires value : int

provides value : int



Incremental

Variability

Models

Luca Favalli

LPL

Language Families

Problem

Bottom-up

LPL

Overview

Abstract Syntax

Concrete Syntax

Semantics

Language Feature

Composition

Model Update

Conclusion

Slide 11 of 15

Bottom-up Language Product Line Engineering
Configure the language semantics

S ← Expr

Expr ← Expr “+” Expr Expr ← Expr “*” Expr

Expr ← Number

Number ← [0-9]+

requires value : int

provides value : int

requires value : int

provides value : int

requires value : int

provides value : int

provides value : int

requires value : int



Incremental

Variability

Models

Luca Favalli

LPL

Language Families

Problem

Bottom-up

LPL

Overview

Abstract Syntax

Concrete Syntax

Semantics

Language Feature

Composition

Model Update

Conclusion

Slide 12 of 15

Bottom-up Language Product Line Engineering
Compose abstract syntax, concrete syntax and semantics into a

language feature

S ← Expr

Expr ← Expr “+” Expr Expr ← Expr “*” Expr

Expr ← Number

Number ← [0-9]+

requires value : int

provides value : int

requires value : int

provides value : int

requires value : int

provides value : int

provides value : int

requires value : int



Incremental

Variability

Models

Luca Favalli

LPL

Language Families

Problem

Bottom-up

LPL

Overview

Abstract Syntax

Concrete Syntax

Semantics

Language Feature

Composition

Model Update

Conclusion

Slide 13 of 15

Bottom-up Language Product Line Engineering
Increment the variability model with the new language features

root

expression

literal

MulExpr

DivExpr

LiteralExpr

AddExpr

IntLiteral

FloatLiteral

Number ← [0-9]+ provides value : int

Expr ← Number
provides value : int

requires value : int

Expr ← Expr “+” Expr
provides value : int

requires value : int

Expr ← Expr “*” Expr
provides value : int

requires value : int

S ← Expr requires value : int



Incremental

Variability

Models

Luca Favalli

LPL

Language Families

Problem

Bottom-up

LPL

Overview

Abstract Syntax

Concrete Syntax

Semantics

Language Feature

Composition

Model Update

Conclusion

Slide 14 of 15

Conclusion

Configuring language variants becomes increasingly simple:

– On the first iteration, the configuration is performed from

scratch

– Each time a new valid language feature is created, it is added to the

variability model

– Using previously configured language features reduces if not skips

at all the semantics resolution stage

– The semantics configuration is driven by the syntax and by pre-

conditions and post-conditions to ensure the validity of the final

product



Incremental

Variability

Models

Luca Favalli

LPL

Language Families

Problem

Bottom-up

LPL

Overview

Abstract Syntax

Concrete Syntax

Semantics

Language Feature

Composition

Model Update

Conclusion

Slide 15 of 15

The End

Questions & Maybe Answers

. . . & time for your input!



Incremental

Variability

Models

Luca Favalli

LPL

Language Families

Problem

Bottom-up

LPL

Overview

Abstract Syntax

Concrete Syntax

Semantics

Language Feature

Composition

Model Update

Conclusion

Slide 15 of 15

The End

Questions & Maybe Answers

. . . & time for your input!


	Language Product Lines
	Language Families
	Problem

	Bottom-up Language Product Line Engineering
	Overview
	Extract the variability model from the abstract syntax
	Configure the concrete syntax and extract the grammar
	Configure the language semantics
	Compose abstract syntax, concrete syntax and semantics into a language feature
	Increment the variability model with the new language features

	Conclusion

