

Many-to-many, Source-tosource, transpilation infrastructure

Francesco Bertolotti

Prellininaries

 δ -translatio

Example

situational

 δ -alternativ

Conclusions

Many-to-many, Source-to-source, transpilation infrastructure

Francesco Bertolotti

Università degli Studi di Milano, Computer Science Department

T-LADIES Kick-off, Pisa, July 6th 2022

Joint work with Walter Cazzola

Disclaimer#1

Many-to-many, Source-tosource, transpilation infrastructure

Francesco Bertolotti

Disclaimer

r (Cilivili to) ic

0-translati

Example

∂-translation

o-arternatives

Conclusions

This is a work in its very early stages.

So early that this is just an idea.

- If you have any suggestions please let us know.
- If you do not think this is a good idea please let us know.
- Or, if you know similar tools.

Disclaimer#2

Many-to-many, Source-tosource, transpilation infrastructure

Francesco Bertolotti

Disclaimer

Prelliviriarie

a-translation

Example

situational

 δ -alternative

Condusions

I am going to use a little Bit of notation from:

- BNF grammars, and
- denotational semantics

With a pinch of abuse.

However, I am no expert with these formalism.

Again, if you see any error let us know.

Library ecosystem

Many-to-many, Source-tosource, transpilation infrastructure

Francesco Bertolotti

Disclain

Motivation

r i cilivii toi ic

_ .

Example

δ-translatio

o-alternative

Conclusions

A Library ecosystem represent the libraries available to developers for a specific language.

- Example: Numpy is part of the Python library ecosystem.
- Example: Apache commons is part of the Java library ecosystem.

Most of these libraries are tied to one or a few languages.

Library ecosystems are not interchangeable.

Source-tosource, transpilation infrastructure

Francesco Bertolotti

Disclaim

Motivation

Preliminarie

Example

δ-translatio

Conclusions

A library from an ecosystem cannot be used in another one.

- Example: You cannot use Numpy in Java.
- Example: You cannot use Apache commons in Python.

At least, not without ad-hoc Bindings.

Library ecosystems are overlapping.

Many-to-many, Source-tosource, transpilation infrastructure

Francesco Bertolotti

Disclain

Motivation

Prellivinarie

Example

 δ -translation

 δ -alternativ

Conclusions

Software from different ecosystems offer similar functionalities.

- Example: Java Random class is similar to Python random module.
- Example: Java Nd4j is similar to Python Numpy.

This means that there is a lot of replication.

Library ecosystems development take time.

Many-to-many, Source-tosource, transpilation infrastructure

Francesco Bertolotti

Disclair

Motivation

Preliminarie

- . .

Example

δ-translatio

 δ -alternativ

Condusions

A mature software ecosystems takes years of community development.

- Example: Numpy development lasted more than 15 years of community work.
- Example: Java still lacks a mature autodiff. library.

New programming languages need a mature ecosystem before becoming compelling.

Library ecosystems are different

Source-tosource, transpilation infrastructure

Francesco Bertolotti

Disclaim

Motivation

F (CIIIV)II IO(IC

0 0 0 0000

Example

situational

 δ -alternativ

Condusions

Changing programming language means learning a new library ecosystem.

Which takes

- time, and
- practice.

Migratable library ecosystem

Many-to-many, Source-tosource, transpilation infrastructure

Francesco Bertolotti

Disclair

Motivation

Prellininarie

0-translatio

Example

Example

 δ -translation

δ-alternative

Conclusions

With a transpiler, we can render libraries for an ecosystem available to another.

It can be done systematically.

However, we need to build transpilers between languages.

We need many of them.

Migratable library ecosystem

Many-to-many, Source-tosource, transpilation infrastructure

Francesco Bertolotti

Disclaim

Motivation

Prellininarie

0-translati

Example

CADIVIFIC

S-altarnati

Conclusions

We need an infrastructure that allows for:

- modular, and
- reusable development.

Many-to-many, Source-tosource, transpilation infrastructure

Francesco Bertolotti

Disclair

MOTIVATION

Preliminaries

ð-translatio

E. coa solo

Example

δ-translatio

δ-alternativ

Condusions

Languages are formed by stacking language features together.

A language feature is a piece of syntax with a piece of semantics.

A piece of syntax represents form. (add \leftarrow expr "+" expr).

A piece of semantics represents computation $(\llbracket a+b\rrbracket(\sigma))=\llbracket a\rrbracket(\sigma)+\llbracket b\rrbracket(\sigma)).$

Many-to-many, Source-tosource, transpilation infrastructure

Francesco Bertolotti

0130011110

Preliminaries

Example

 δ -translatio

 δ -alternative

Conclusions

The syntax tells how to parse text.

The semantics tells how to evaluate the parsed text.

"a+в"

Many-to-many, Source-tosource, transpilation infrastructure

Francesco Bertolotti

Preliminaries

. . .

Example

δ-translati

o-arternativ

Conclusion

Abstract Syntax Tree (AST) represents Both:

- the sources, and
- the computation.

Many-to-many, Source-tosource, transpilation infrastructure

Francesco Bertolotti

Disclair

Preliminaries

Example

cide sodional

S -14- -- - 43

Conclusions

There are infinite languages that could have generated a given AST.

If a language L can generate the AST T, then we say that T belongs $\ensuremath{\mathcal{L}}$

$$(T \in \mathcal{L})$$

Problem statement and proposed solution

Many-to-many, Source-tosource, transpilation infrastructure

Francesco Bertolotti

Disclain

Preliminarie

 δ -translation

_ .

Example

δ-translatio

 δ -alternativ

Conclusions

Problem: Library availability is language-dependent.

Objective: Translating libraries from any language to any language.

ldea

Many-to-many, Source-tosource, transpilation infrastructure

Francesco Bertolotti

Disclair

.

δ-translation

0 0 0 0 0 0

Example

situational δ -translation

 δ -alternative

Conclusions

Build a transpilation infrastructure made of small translation functions.

Each function translate a small piece of the AST.

The functions are used by a system to find a transpilation from one language to the other.

Many-to-many, Source-tosource, transpilation infrastructure

Francesco Bertolotti

DISCIDIFIC

MOTIVATIO

 δ -translation

Example

 δ -translation

Condusions

A δ -translation is represented as a directed connection between trees. E.g.:

A δ -translation δ on an AST T, $\delta(T)$:

- it pattern matches the left tree.
- it replace the match with the right tree.

Many-to-many, Source-tosource, transpilation infrastructure

Francesco Bertolotti

Disclaim

. 10 (140 (16

 δ -translation

0 11 81 518 1101

Example

δ-translatio

ð-alternativ

Conclusions

A δ -translation is:

- Modular. (one does not affect the other).
- Reusable. (it can be reused in other scenarios).
- Composable. (it can be chained).

Many-to-many, Source-tosource, transpilation infrastructure

Francesco Bertolotti

Disclain

Motivatio

Preliminarie

 δ -translation

Example

δ-translatio

o-alternative

Condusions

A translation is computationally invariant iff:

 $\forall x \in id$,

 $\forall y \in expr$,

 $\forall \sigma \in \Sigma$:

 $[\![\delta(\mathit{OrAss}(x,y))]\!](\sigma) = [\![\mathit{OrAss}(x,y)]\!](\sigma)$

Computational invariance cannot be verified.

It is the developer responsibility to write and use computation invariant δs

Many-to-many, Source-tosource, transpilation infrastructure

Francesco Bertolotti

Discialm

 δ -translation

_ .

Example

δ-translatio

 δ -alternativ

Conclusions

Applying a δ -translation can change AST language by changing: a language-feature, a μ -language, a sub-language or the entire language.

$$T \in \mathcal{L} \implies \delta(T) \in \mathcal{L}$$

(But it does not change the outcome of execution.)

if-while language

Many-to-many, Source-tosource, transpilation infrastructure

Francesco Bertolotti

0130011110

Motivatio

Preliminarie

Example

situational

 δ -translation

Conducione

```
[x; y](\sigma) = [x]([y](\sigma))
stmt ←stmt ":" stmt
        ← assgn
        ← while
        ← if
                                                                                                \llbracket if(x)\{y\} \rrbracket(\sigma) = \llbracket y \rrbracket(\sigma) \text{ if } x \neq \mathbf{0} \text{ else } \sigma
    if ← "if" "(" expr ")" "{" stmt "}"
 while \leftarrow "while" "(" expr ")" "\{" stmt"\}" \qquad \llbracket while(x)\{y\} \rrbracket (\sigma) = \llbracket while(x)\{y\} \rrbracket (\llbracket y\rrbracket (\sigma)) \text{ if } x \neq \mathbf{0} \text{ else } \sigma 
                                                                                                                            [x = y](\sigma) = \sigma[x \leftarrow y]
assgn ←id "=" expr
                                                                                                                  [x + y](\sigma) = [x](\sigma) + [y](\sigma)
 expr ←expr "+" expr
        ←expr "-" expr
                                                                                                               [x - y](\sigma) = [x](\sigma) - [y](\sigma)
       ← expr "==" expr
                                                                                                          [x == y](\sigma) = 1 if x == y else 0
       ← id
        ← int
    id \leftarrow [a..za..z]+
                                                                                                                                         [x](\sigma) = lit(x)
   int ← [0..91+
                                                                                                                                         [x](\sigma) = int(x)
```


While language

stmt ←stmt ":" stmt

Many-to-many. Source-tosource. transpilation infrastructure

Francesco Bertolotti

Example

```
\llbracket x;y \rrbracket(\sigma) = \llbracket x \rrbracket(\llbracket y \rrbracket(\sigma))
        ← assgn
         ← while
while \leftarrow "while" "(" expr ")" "{" stmt"}" [while(x){y}](\sigma) = [while(x){y}]([[y]](\sigma)) if x \neq 0 else \sigma
```

assgn ←id "=" expr $[x = y](\sigma) = \sigma[x \leftarrow y]$ $[x + y](\sigma) = [x](\sigma) + [y](\sigma)$ expr ←expr "+" expr ←expr "-" expr $[x - y](\sigma) = [x](\sigma) - [y](\sigma)$ ← expr "==" expr $[x == y](\sigma) = 1$ if x == y else 0 ← id ← int $id \leftarrow [a..zA..Z]+$ $[x](\sigma) = lit(x)$ int ← [0..91+ $[x](\sigma) = int(x)$

if language

Many-to-many, Source-tosource, transpilation infrastructure

Francesco Bertolotti

0130011101

Motivatic

Preliminarie

 δ -translation

Example

situational δ -translation

 δ -alternative

```
 \begin{bmatrix} [if(x)\{y\}]](\sigma) = \llbracket y \rrbracket(\sigma) \text{ if } x \neq \mathbf{0} \text{ else } \sigma \\ [if(x)\{y\}]](\sigma) = \llbracket y \rrbracket(\sigma) \text{ if } x \neq \mathbf{0} \text{ else } \sigma \\ \\ \llbracket x = y \rrbracket(\sigma) = \sigma \llbracket x + \varphi \rrbracket \\ \\ \llbracket x + y \rrbracket(\sigma) = \llbracket x \rrbracket(\sigma) + \llbracket y \rrbracket(\sigma) \\ \\ \llbracket x - y \rrbracket(\sigma) = \llbracket x \rrbracket(\sigma) - \llbracket y \rrbracket(\sigma) \\ \\ \llbracket x = y \rrbracket(\sigma) = \mathbf{1} \text{ if } x = y \text{ else } \mathbf{0} \end{bmatrix}
```

 $[x; y](\sigma) = [x]([y](\sigma))$

 $\llbracket x \rrbracket(\sigma) = lit(x)$

$(if \rightarrow while)$ -translation

Source-tosource, transpilation infrastructure

Francesco Bertolotti

Disclair

Motivatio

Preliminarie

r (Cilivili lo) ic

_ .

Example

 δ -translatio

 δ -alternative

Many-to-many, Source-tosource, transpilation infrastructure

Francesco Bertolotti

Disclaime

/ 10 ci vo ci o

Preliminarie:

δ-translatio

Example

 δ -translati

 δ -alternativ

Condusions

```
flag = 1;
x = 10;
while(flag) {
    x = x - 1;
    if (x == 1) {flag = 0};
}
```



```
Many-to-many,
Source-to-
source,
transpilation
infrastructure
```

Francesco Bertolotti

Disclaime

MOTIVATION

Preliminarie

Example

 δ -translatio

δ-alternativ

Condusions

```
flag = 1;
x = 10;
while(flag) {
    x = x - 1;
    if (x == 1) {flag = 0};
}
```

```
flag = 1;
x = 10;
while(flag) {
    x = x - 1;
    z = x == 1;
    while(z) {
       flag = 0;
       z = 0;
    }
}
```



```
Many-to-many,
Source-to-
source,
transpilation
infrastructure
```

Francesco Bertolotti

Disclaime

7-10-0148-0101

Preliminarie

Example

 δ -translatio

 δ -alternative

Conclusions

```
flag = 1;
x = 10;
while(flag) {
    x = x - 1;
    if (x == 1) {flag = 0};
}
```

```
flag = 1;
x = 10;
while(flag) {
    x = x - 1;
    z = x == 1;
    while(z) {
        flag = 0;
        z = 0;
    }
}
```

while

if-while


```
Many-to-many,
Source-to-
source,
transpilation
infrastructure
```

Francesco Bertolotti

Disclaime

._ ...

Preliminarie

Example

situational

 δ -alternative

```
flag = 1;
x = 10;
while(flag) {
    x = x - 1;
    if (x == 1) {flag = 0};
}
```

```
flag = 1;
x = 10;
while(flag) {
    x = x - 1;
    z = x == 1;
    while(z) {
        flag = 0;
        z = 0;
    }
}
```



```
Many-to-many,
Source-to-
source,
transpilation
infrastructure
```

Francesco Bertolotti

DISCIDIFIC

/*10 tiva tic

Preliminarie

Example

 δ –translatio

 δ -alternative

```
flag = 1;
x = 10;
while(flag) {
    x = x - 1;
    if (x == 1) {flag = 0};
}
```

```
flag = 1;
x = 10;
while(flag) {
    x = x - 1;
    z = x == 1;
    while(z) {
       flag = 0;
       z = 0;
    }
}
```



```
Many-to-many,
Source-to-
source,
transpilation
infrastructure
```

Francesco Bertolotti

Disclaim

Motivatio

Preliminarie

Example

 δ -translatio

 δ -alternativ

```
flag = 1;
x = 10;
while(flag) {
    x = x - 1;
    if (x == 1) {flag = 0};
}
```

```
flag = 1;
x = 10;
while(flag) {
    x = x - 1;
    z = x == 1;
    while(z) {
        flag = 0;
        z = 0;
    }
}
```


Many-to-many, Source-tosource, transpilation infrastructure

Francesco Bertolotti

DISCIONAL

MOTIVATIO

Preliminario

S-tranclati

Exam

situational δ -translation

o-translation

Condusions

Situational δ -translations are translations that are only aplicable under few circumstances. For example:

Provided that stmt' does not modify x

Many-to-many, Source-tosource, transpilation infrastructure

Francesco Bertolotti

Disclair

Motivatio

Preliminarie

S 6-----

Example

situational

 δ -translation

0-arternative

Conclusions

Situational δ -translations are not reliable to translate one language into another.

Situational δ -translation may succeed into translating only in certain situations.


```
Many-to-many,
Source-to-
source,
transpilation
infrastructure
```

Francesco Bertolotti

Discialine

Motivatio

0-0-0-0-0

C

Example

situational δ –translation

o-arternati

Condusions

```
x = 3;
y = 0;
while(x) {
    x = x - 1;
    y = y + 2;
}
```



```
Many-to-many,
Source-to-
source,
transpilation
infrastructure
```

Francesco Bertolotti

Disclaime

Motivation

0-10-11-12-

E ...

Example

situational δ -translation

o-arternati

```
x = 3;
y = 0;
while(x) {
    x = x - 1;
    y = y + 2;
}
```

```
y = 0;
y = y + 2;
y = y + 2;
y = y + 2;
```


Many-to-many, Source-tosource, transpilation infrastructure

Francesco Bertolotti

Discialme

7-10-c1v2-c10

Preliminarie

_ .

Example

situational δ –translation

 δ -alternative

```
x = 3;
y = 0;
while(x) {
    x = x - 1;
    y = y + 2;
}
```

```
y = 0;
y = y + 2;
y = y + 2;
y = y + 2;
```


δ -alternatives

Many-to-many, Source-tosource, transpilation infrastructure

Francesco Bertolotti

Disclaim

Preliminarie

o-translatic

Example

0 4 5 5 5 6 6

 δ -alternatives

Conclusion

A δ -translation may have alternatives that are user dependent.

For example:

- The user may have a preference on the generation of the identifier z.
- Or, it may want to use a different translation pattern.

Transpilation Product Lines

Many-to-many, Source-tosource, transpilation infrastructure

Francesco Bertolotti

Disclair

Prellininarie

Example

ride radional

 δ -alternatives

Conclusions

We need to model the δ -variability that can occur.

Different δ -translation lead to different products.

Feature models seems a good model for this kind of variability.

Conclusion

Many-to-many, Source-tosource, transpilation infrastructure

Francesco Bertolotti

Disclaime

Motivatio

Prelliviriarie

E. coa - plo

Example

δ-translatio

o-arter native

Conclusions

 δ s can be used to translate any language to any other language.

 δ s are reusable, modular but have alternatives.

 δ s can be chained to build new transpilers.

The target language can be expressed declaratively.

 δ s Product lines can be used to model alternatives.

Many-to-many, Source-tosource, transpilation infrastructure

Francesco Bertolotti

DISCIONACI

r (Ciliviii lot ic

_

situational

 δ -alternative

Conclusions

Thank you for your attention.

