Many—to-many,
Source—to-

source,
transpilation
infrastructure

Froncesco Many—to-many, Source—to-source, transpilation
infrastructure

Francesco Bertolotti

Universita deali Studi di Milano,
Computer Science Department

T-LADIES Kick-of#, Pisa, July 5th 20272

Joint work with Walter Cazzola

Slide | of 32



Disclaimer=l

Many—to-many,
Source—to-
source,
transpilation
infrastructure

Francesco
Bertolotti

N This is 8 work in its very early staces.
So early that this is just an idea.

— |£ you have any suaaestions please let us know.
— |# you do not think this is 8 cood idea please let us know.
— Or, i# you know similar tools.

Slide 2 of 32



DisclaimerE2

Many—to-many,
Source—to-
source,
transpilation
infrastructure

Francesco
Bertolotti

| am @oinG to use a little Bit of notation from:
— BNF arammars, and

Disclaimer

— denotational semantics

With a pinch of aruse.
However, | am No expert with these formalism.

Again, i£ you see any ervror let us know.

Slide 3 of 32



Lierary ecosystem

Many—to-many,
Source—to-
source,
transpilation
infrastructure

Francesco
Bertolotti

A Lierary ecosystem represent the ligraries availagle to develop-
Motivation ers for a specific languace.

— Example: Numpy is part of the Python ligrary ecosystem.
— Example: Apache commons is part of the Java lierary ecosystem.

Most of these lieraries are tied to one or a few lanauaaes.

Slide 4+ of 32



Lierary ecosystems are Not interchanceakle.

Many—to-many,
Source—to-
source,
transpilation
infrastructure

Francesco
Bertolotti

A lierary £rom an ecosystem cannot Be used in another one.

Mativation

— Example: You cannot use Numpy in Java.

— Example: You cannot use Apache commons in Python

At least, not without ad-hoce Bindinas.

Slide S of 32



LiBrary ecosystems are overlapping.

Many—to-many,
Source—to-
source,
transpilation
infrastructure

Francesco
Bertolotti

Software from different ecosystems offer similar functional-
Motivation ities.

— Example: Java R.andom class is similar to Python random module.
— Example: Java NdHj is similar to Python Numpy.

This means that there is a lot of replication

Slide & of 32



Lierary ecosystems development take time.

Many—to-many,
Source—to-
source,
transpilation
infrastructure

Francesco
Bertolotti

A mature software ecosystems takes years Of community de-

velopment.

Motivation

— Example: Numpy development lasted more than IS years of commu-
nity work.

— Example: Java still lacks a8 mature autodiff. ligrary.

New proaramming lanauaaes Nneed a mature ecosystem sefore
BecoOMING compelling.

Slide To# 32



Lierary ecosystems are different

Many—to-many,
Source—to-
source,
transpilation
infrastructure

Francesco
Bertolotti

Chanaing proaramming lancauace means learning a new ligrary
ecosystem.

Mativation

Which takes
— time, and
— practice.

Slide & of 32



Miaratarle lirrary ecosystem

Many—to-many,
Source—to-
source,
transpilation
infrastructure

Francesco
Bertolotti

With a transpiler, we can render ligraries for an ecosystem
availagle to another.

Mativation

K can Be done systematically.
However, we need to Build transpilers petween languaces.

We need many of them.

Slide 9 of 32



Miaratarle lirrary ecosystem

Many—to-many,
Source—to-
source,
transpilation
infrastructure

Francesco
Bertolotti

Motivation We need an infrastructure that allows for:

— mOodular, and

— reusakle developmentt.

Slide 1O of 32



Preliminaries

Many—to-many,
Source—to-
source,
transpilation
infrastructure

Francesco

Bertolotti Lanauaces are formed By stacking lanGuage features together.

A languace feature is a piece Of syntax with a piece of semanttics.

Preliminaries

A piece Of syntax represents form.
(add + expr "+" expr).

A piece Of semantics represents computation

([a+ b](0)) = [al(o) + [b] (o).

Slide Il of 32



Preliminaries

Many—to-many,
Source—to-

source, The syntax tells how to parse text.
transpilation
infrastructure

Francesco The semanttics tells how to evaluate the parsed text.

Bertolotti
syntax @ semantics

parsing @ ° e computing

Preliminaries

syntax
unparsing

" [0

ata

Slide 12 of 32



Preliminaries

Many—to-many,
Source—to-
source,
transpilation
infrastructure

Francesco
Bertolotti

Agstract Syntax Tree (AST) represents BOth:
— the sources, and

Preliminaries

— the computation

Slide I3 of 32



Preliminaries

Many—to-many,
Source—to-
source,
transpilation
infrastructure

Francesco
Bertolotti

There are infinite lancuaces that could have aenerated a aiven
AST

Preliminaries

I# a lanGuace L can cenerate the AST T, then we say that T
gelonas L
(Te

Slide 4+ of 32



Proerlem statement and proposed solution

Many—to-many,
Source—to-
source,
transpilation
infrastructure

Francesco
Bertolotti

Proelem: Lierary availagility is lanauace-dependentt.

S—transistion Oegjective: Translating ligraries from any lanauace to any lan-
QuaGe.

Slide IS of 32



Many—to-many,
Source—to-
source,
transpilation
infrastructure

Francesco
Bertolotti

Build a transpilation infrastructure made of small translation
functions.

Each function translate a small piece of the AST.

Sd—translation

The functions are used By a system to £ind a transpilation from
one languace to the other.

Slide |6 of 32



J—translation

Many—to-many,
Source—to-

e A J—translation is represented as a directed connection Re-

infrastructure tween trees. E(: 5

Francesco

Bertolotti
e ekt
- d—translation -
OrAssianment | ------------- Assianment

Sd—translation

A d—translation § on an AST T, §(T):
— it pattern matches the left tree.
— it replace the match with the right tree.

Slide [T of 32



Many—to-many,

Source—to-
source,
transpilation
infrastructure

Francesco
Bertolotti

A d—translation is:
— Modular. (one does Nnot atfect the other).
catizs iy — Reusarle. (it can Be reused in other scenarios).

— Composaile. (it can re chained).

Slide 18 of 32



J—translation

Many—to-many,
Source—to-
source,
transpilation
infrastructure

Francesco

Bertolott A translation is computationally invariant i££:

Vx € id,

Yy € expr,
Sd—translation VO' < Z :
[6(OrAss(x, y))](o) = [OrAss(x, y)] (o)

Computational invariance cannot Be verified.

K is the developer responsigility to write and use computation
invariant Js

Slide 19 of 32



J—translation

Many—to-many,
Source—to-
source,
transpilation
infrastructure

Francesco
Sertolott Applyina 8 d—translation can chanae AST lanGuace By chanainG:
3 lanauace-feature, a p-lanauace, a sug-languace or the entire

lanGauace.

Sd—translation

TeLl =5 6(T)eL

(But it does not chanae the outcome of execution)

Slide 20 of 32



Many—to-many,
Source—to-
source,
transpilation
infrastructure

Francesco
Bertolotti

Example

Slide 21 of 32

stmt

=3

while
assgn

expr

<—stmt ";" stmt

<—assgn

<—while

< if

< "if" (" expr )" "{" stmt "}"

<+"while" "(" expr ") {" stmt"}"
<—id "=" expr

<—expr "+" expr

<—expr "-" expr

<—expr "==" expr

<—id

<—int

+[a..za..z]+

«~[0..9]+

[xi y1(o) = [x](Lyl(<))

L) {}1(0) = [I(o) if x #0 else o

[white(x) {y}]() = [while(x) {y }]([¥](c)) if x #0 else o
[x = yI(e) = olx + ]

[x + y1(o) = [x1(o) + [¥I(o)

Ix = y1(o) = [xI(e) — [yl(o)

[x == yl(o) = 1 if x == y else O

[x1(o) = fit(x)

[x)(o) = int(x)




While languace

Many—to-many,
Source—to-
source,
transpilation
infrastructure

Francesco stmt <—stmt ";" stmt [xi y1(e) = [xI([y1(o))
Bertolotti
«—assgn —

<—while =

while <—"while" "(" expr ")" "{" stmt"}" [while(x){y}1 (o) = [while(x){y}1([y](c)) if x # 0 else o

assgn <—id "=" expr [x = yl(o) = olx + y]

Eevie expr «—expr "+ expr Ix+ y1(e) = [x1(e) + [¥1(o)
—expr "= expr Ix — y1(0) = [x(0) — [¥1(o)

<—expr "==" expr [x == y](c) =1 if x == y else O

<—id =

<—int —

id <—[a..zA..Z]+ [xI(e) = lit(x)

int <—[0..9]+ [xI(o) = int(x)

Slide 22 of 32



£ lanGguace

Many—to-many,
Source—to-
source,
transpilation
infrastructure

Francesco stmt
Bertolotti

Example expr

Slide 23 of 32

<—stmt ";" stmt
<—assgn

+—"i expr
< "if" (" expr
—id "=" expr
<—expr "+" expr
<—expr "-" expr
<—expr "==" expr
<—id

<—int
+la..za..z]+
<[0..9]+

[xiyI(e) = [XI(DyI(e))

{" stmt "}" [if(){y3}1(e) =
{" stmt "} LifC){y}1(o) =

y](o) if x # 0 else o
(o) if x # 0 else o

[x = yl(o) = olx v

[x + (o) = [x1(o) + [¥I(o)

[x = ¥1(o) = [xI(e) = [¥I(o)

[x ==y](c) =1 if x == y else O
Ix1(o) = fit(x)

[x1(o) = int(x)




(if — while)—translation

Many—to-many,
Source—to-
source,
transpilation
infrastructure

Francesco
Bertolotti

Example

(z must Be a uniQue id)

Slide 24 of 32



Many—to-many,
Source—to-
source,
transpilation
infrastructure

Francesco
Bertolotti

Example

Slide 25 of 32

i£-while snippet to while snippet

flag = 1;

x = 10;

while(flag) {
X =x - 1;

if (x == 1) {flag = 0};




i£-while snippet to while snippet

Many—to-many,

Source—to- flag = 1;
source,
transpilation flag = 1; x = 10;
infrastructure x = 10; while(f'Lag) {
Francesco while(flag) { X =X - 1;
Bertolotti X = x - 1: zZ=X==1:
if (x == 1) {flag = 0}; while(z) {
} flag = 0;
z =0;
}

Example

Slide 25 of 32



i£-while snippet to while snippet

Many—to-many,
Source—to- flag = 1;
source, !
transpilation flag = 1; x = 10;
infrastructure x = 10; while(f'Lag) {
Francesco while(flag) { X =X - 1;
Bertolotti X = x - 1: zZ=X==1:
if (x == 1) {flag = 0}; while(z) {
} flag = 0;
z =0;
}
)]

Example

Slide 25 of 32



Many—to-many,
Source—to-
source,
transpilation
infrastructure

Francesco
Bertolotti

Example

Slide 25 of 32

i£-while snippet to while snippet

flag = 1;

x = 10;

while(flag) {
X =x - 1;

if (x == 1) {flag = 0};

flag = 1;
x = 10;
while(flag) {
X=X - 1;
zZ =X ==1;
while(z) {
flag = 0;
z =0;
}
}
< -
,,,,,,,,,,,,,,,,,,,, 5L
R



Many—to-many,
Source—to-
source,
transpilation
infrastructure

Francesco
Bertolotti

Example

Slide 25 of 32

flag = 1;

x = 10;

while(flag) {
X =x - 1;

if (x == 1) {flag = 0};

i£-while snippet to while snippet

flag = 1;
x = 10;
while(flag) {
X =x-1;
zZ =X ==1;
while(z) {
flag = 0;
z =0;
}
}
o
__________ oS-
s




i£-while snippet to while snippet

Many—to-many,

Source—to- flag = 1;
source,
transpilation flag = 1; x = 10;
infrastructure x = 10; while(f'Lag) {
Francesco while(flag) { X =X - 1;
Bertolotti X = x - 1: zZ=X==1:
if (x == 1) {flag = 0}; while(z) {
} flag = 0;
z =0;
}

Example

Slide 25 of 32



Situational i—translation

Many—to-many,
Source—to-
source,
transpilation

infrestructure Situational i—translations are translations that are only aplicasle

Francesco under few circumstances. For example:
Bertolotti

situational
d—translation

reapeated N-I times

[x =x- Ij [S‘trwt’]

Provided that stvt’ does Nnot modify x.

Slide 26 of 32



Situational i—translation

Many—to-many,
Source—to-
source,
transpilation
infrastructure

Francesco
Bertolotti

Situational é—translations are not reliakle to translate one lan-
Gauage iInto another.

Situational d—translation may succeed into translating only in
situstional certain situations.

d—translation

Slide 27 of 32



Situational i—translation

Many—to-many,
Source—to-
source,
transpilation
infrastructure

Francesco X
Bertolotti

= 0;

while(x) {
X=X -1;
y=y+2;

situational
d—translation

Slide 2.8 of 32



Situational i—translation

Many—to-many,
Source—to-
source,
transpilation
infrastructure

Francesco X

Bertolotti = 0; y = 0;
while(x) { y=y+ 2;
X =Xx - 1; y=y+ 2;
y=y+2; y=y+2;

situational
d—translation

Slide 2.8 of 32



Situational i—translation

Many—to-many,

Source—to-
source,
transpilation
infrastructure
Francesco X = 3;
Bertolotti y = 0; y = 0;
while(x) { y=y+2;
X =x - 1; y=y+2;
y=y+2; y=y+2;
}

d—translation

situational 7 T WH”C
¥
\

Slide 2.8 of 32



o-alternatives

Many—to-many,
Source—to-
source,
transpilation
infrastructure

Francesco
Bertolotti

A d—translation may have alternatives that are user dependent.

For examwple:

— The user may have a preference on the generation of the identitier
Iz

— Or, it may want to use a different translation pattern.

d-atternatives

Slide 29 of 32



Transpilation Product Lines

Many—to-many,
Source—to-
source,
transpilation
infrastructure

Francesco
Bertolotti

We need tO0 model the d-variagility that can ocecur.
Ditferent d—translation lead to different products.
Feature models seems a8 Good model for this kind of variagility.

d-atternatives

Slide 30 of 32



Conclusion

Many—to-many,
Source—to-
source,
transpilation
infrastructure

Francesco

Bertolotti ds can Be used to translate any languace to any other languace.

0s are reusakle, modular But have akHternatives.
0s can Be chained toO ruild new transpilers.
The taraet lanauace can Be expressed declaratively.

Condlusions 0s Product lines can Be used t0 model alternatives.

Slide 3l of 32



Many—to-many,
Source—to-

source,
transpilation
infrastructure

Francesco
Bertolotti

Thank you for your attention.

Conclusions

Slide 32 of 32



	Disclaimer
	Motivation
	Preliminaries
	-translation
	Example
	situational -translation
	-alternatives
	Conclusions

