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N This is 8 work in its very early staces.
So early that this is just an idea.

— |£ you have any suaaestions please let us know.
— |# you do not think this is 8 cood idea please let us know.
— Or, i# you know similar tools.
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| am @oinG to use a little Bit of notation from:
— BNF arammars, and

Disclaimer

— denotational semantics

With a pinch of aruse.
However, | am No expert with these formalism.

Again, i£ you see any ervror let us know.
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A Lierary ecosystem represent the ligraries availagle to develop-
Motivation ers for a specific languace.

— Example: Numpy is part of the Python ligrary ecosystem.
— Example: Apache commons is part of the Java lierary ecosystem.

Most of these lieraries are tied to one or a few lanauaaes.
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Lierary ecosystems are Not interchanceakle.
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A lierary £rom an ecosystem cannot Be used in another one.

Mativation

— Example: You cannot use Numpy in Java.

— Example: You cannot use Apache commons in Python

At least, not without ad-hoce Bindinas.
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Software from different ecosystems offer similar functional-
Motivation ities.

— Example: Java R.andom class is similar to Python random module.
— Example: Java NdHj is similar to Python Numpy.

This means that there is a lot of replication
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A mature software ecosystems takes years Of community de-

velopment.

Motivation

— Example: Numpy development lasted more than IS years of commu-
nity work.

— Example: Java still lacks a8 mature autodiff. ligrary.

New proaramming lanauaaes Nneed a mature ecosystem sefore
BecoOMING compelling.
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Chanaing proaramming lancauace means learning a new ligrary
ecosystem.

Mativation

Which takes
— time, and
— practice.
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With a transpiler, we can render ligraries for an ecosystem
availagle to another.

Mativation

K can Be done systematically.
However, we need to Build transpilers petween languaces.

We need many of them.
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Motivation We need an infrastructure that allows for:

— mOodular, and

— reusakle developmentt.

Slide 1O of 32



Preliminaries
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Bertolotti Lanauaces are formed By stacking lanGuage features together.

A languace feature is a piece Of syntax with a piece of semanttics.

Preliminaries

A piece Of syntax represents form.
(add + expr "+" expr).

A piece Of semantics represents computation

([a+ b](0)) = [al(o) + [b] (o).
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syntax @ semantics

parsing @ ° e computing

Preliminaries

syntax
unparsing

" [0

ata
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Agstract Syntax Tree (AST) represents BOth:
— the sources, and

Preliminaries

— the computation
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There are infinite lancuaces that could have aenerated a aiven
AST

Preliminaries

I# a lanGuace L can cenerate the AST T, then we say that T
gelonas L
(Te
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Proelem: Lierary availagility is lanauace-dependentt.

S—transistion Oegjective: Translating ligraries from any lanauace to any lan-
QuaGe.
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Build a transpilation infrastructure made of small translation
functions.

Each function translate a small piece of the AST.

Sd—translation

The functions are used By a system to £ind a transpilation from
one languace to the other.
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e ekt
- d—translation -
OrAssianment | ------------- Assianment

Sd—translation

A d—translation § on an AST T, §(T):
— it pattern matches the left tree.
— it replace the match with the right tree.
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A d—translation is:
— Modular. (one does Nnot atfect the other).
catizs iy — Reusarle. (it can Be reused in other scenarios).

— Composaile. (it can re chained).
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Vx € id,

Yy € expr,
Sd—translation VO' < Z :
[6(OrAss(x, y))](o) = [OrAss(x, y)] (o)

Computational invariance cannot Be verified.

K is the developer responsigility to write and use computation
invariant Js
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3 lanauace-feature, a p-lanauace, a sug-languace or the entire

lanGauace.

Sd—translation

TeLl =5 6(T)eL

(But it does not chanae the outcome of execution)
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Example
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stmt

=3

while
assgn

expr

<—stmt ";" stmt

<—assgn

<—while

< if

< "if" (" expr )" "{" stmt "}"

<+"while" "(" expr ") {" stmt"}"
<—id "=" expr

<—expr "+" expr

<—expr "-" expr

<—expr "==" expr

<—id

<—int

+[a..za..z]+

«~[0..9]+

[xi y1(o) = [x](Lyl(<))

L) {}1(0) = [I(o) if x #0 else o

[white(x) {y}]() = [while(x) {y }]([¥](c)) if x #0 else o
[x = yI(e) = olx + ]

[x + y1(o) = [x1(o) + [¥I(o)

Ix = y1(o) = [xI(e) — [yl(o)

[x == yl(o) = 1 if x == y else O

[x1(o) = fit(x)

[x)(o) = int(x)




While languace
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«—assgn —

<—while =

while <—"while" "(" expr ")" "{" stmt"}" [while(x){y}1 (o) = [while(x){y}1([y](c)) if x # 0 else o

assgn <—id "=" expr [x = yl(o) = olx + y]

Eevie expr «—expr "+ expr Ix+ y1(e) = [x1(e) + [¥1(o)
—expr "= expr Ix — y1(0) = [x(0) — [¥1(o)

<—expr "==" expr [x == y](c) =1 if x == y else O

<—id =

<—int —

id <—[a..zA..Z]+ [xI(e) = lit(x)

int <—[0..9]+ [xI(o) = int(x)
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Example expr
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<—stmt ";" stmt
<—assgn

+—"i expr
< "if" (" expr
—id "=" expr
<—expr "+" expr
<—expr "-" expr
<—expr "==" expr
<—id

<—int
+la..za..z]+
<[0..9]+

[xiyI(e) = [XI(DyI(e))

{" stmt "}" [if(){y3}1(e) =
{" stmt "} LifC){y}1(o) =

y](o) if x # 0 else o
(o) if x # 0 else o

[x = yl(o) = olx v

[x + (o) = [x1(o) + [¥I(o)

[x = ¥1(o) = [xI(e) = [¥I(o)

[x ==y](c) =1 if x == y else O
Ix1(o) = fit(x)

[x1(o) = int(x)
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Example

(z must Be a uniQue id)
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Example
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i£-while snippet to while snippet

flag = 1;

x = 10;

while(flag) {
X =x - 1;

if (x == 1) {flag = 0};




i£-while snippet to while snippet
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source,
transpilation flag = 1; x = 10;
infrastructure x = 10; while(f'Lag) {
Francesco while(flag) { X =X - 1;
Bertolotti X = x - 1: zZ=X==1:
if (x == 1) {flag = 0}; while(z) {
} flag = 0;
z =0;
}

Example
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i£-while snippet to while snippet

flag = 1;

x = 10;

while(flag) {
X =x - 1;

if (x == 1) {flag = 0};

flag = 1;
x = 10;
while(flag) {
X=X - 1;
zZ =X ==1;
while(z) {
flag = 0;
z =0;
}
}
< -
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flag = 1;

x = 10;

while(flag) {
X =x - 1;

if (x == 1) {flag = 0};

i£-while snippet to while snippet

flag = 1;
x = 10;
while(flag) {
X =x-1;
zZ =X ==1;
while(z) {
flag = 0;
z =0;
}
}
o
__________ oS-
s
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situational
d—translation

reapeated N-I times

[x =x- Ij [S‘trwt’]

Provided that stvt’ does Nnot modify x.
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Situational é—translations are not reliakle to translate one lan-
Gauage iInto another.

Situational d—translation may succeed into translating only in
situstional certain situations.

d—translation
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= 0;

while(x) {
X=X -1;
y=y+2;

situational
d—translation
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Situational i—translation
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while(x) { y=y+ 2;
X =Xx - 1; y=y+ 2;
y=y+2; y=y+2;

situational
d—translation
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Situational i—translation
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Bertolotti y = 0; y = 0;
while(x) { y=y+2;
X =x - 1; y=y+2;
y=y+2; y=y+2;
}

d—translation

situational 7 T WH”C
¥
\
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A d—translation may have alternatives that are user dependent.

For examwple:

— The user may have a preference on the generation of the identitier
Iz

— Or, it may want to use a different translation pattern.

d-atternatives
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We need tO0 model the d-variagility that can ocecur.
Ditferent d—translation lead to different products.
Feature models seems a8 Good model for this kind of variagility.

d-atternatives
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Bertolotti ds can Be used to translate any languace to any other languace.

0s are reusakle, modular But have akHternatives.
0s can Be chained toO ruild new transpilers.
The taraet lanauace can Be expressed declaratively.

Condlusions 0s Product lines can Be used t0 model alternatives.
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Thank you for your attention.

Conclusions
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