XunsnEeEEEEEEEEEEEEEE

Specification, Synthesis and Implementation of
Contract-based Applications via Contract Automata

Davide Basile

Permanent Researcher
ISTI CNR, Pisa

D.B. et al. (ISTI CNR Pisa) Contract Automata T-Ladies Kick-off July 2022

XOnsnEeEEEEEEEEEEEEEE

Overview

behavioural contracts and MSCA;
software support and an example;
more details on the synthesis algorithms;

variability and configurations;

ongoing and future work.

D.B. et al. (ISTI CNR Pisa) Contract Automata T-Ladies Kick-off July 2022

XOoOEeEeEEEEEEEEEEEEEE

Behavioural Contracts

@ Behavioural contracts have been introduced in the literature to model
the behaviour of ensembles of services in terms of their interactions;

@ they can be used to reason formally about well-behaving properties of
ensembles of services, and to build applications that are verified by
construction against these properties.

@ Behavioural contracts modelled as Finite State Automata are dubbed
contract automata.

@ in contract automata services match their requests and offers between
each other to reach an agreement

D.B. et al. (ISTI CNR Pisa) Contract Automata T-Ladies Kick-off July 2022

XOooOeEeEEEEEEEEEEEEEE

Modal Service Contract Automata (MSCA)

@ MSCA are FSA enhanced with:
o Partitioned alphabet of actions:

o offers !a (or @) (A°) and requests ?a (or a) (A")

@ special idle action (e ¢ A°U A")
rank : the number of principals in the contract,
Transitions partitioned into permitted (T°) and necessary (T7),
Labels are list of actions and are constrained to be:

o offers: (e,0,0,13),

o requests: (e,7a,0, 0),

e matches: (e,7a,0, 13),

size(list) = rank

D.B. et al. (ISTI CNR Pisa) Contract Automata T-Ladies Kick-off July 2022

XOooOoOEesEEEEEEEEEEEEE

Operations of Contract Automata

s1
u
S > State<S1>
L> Label<L1>
T> ModalTransition<S1,L1,5,L>
A> Automaton<S1,L1,5,T>

s1
S > State<S1>
L> Label<Action>

T>ModalTransition<S1,Action,S, UnaryOperator
A>Automaton<s1,Action,S,T> SynthesisOperator
IntFunction s1

CompositionFunction

ModelCheckingSynthesisOperator

MSCACompositionFunction A s1
S > State<s1>
L>12
T>ModalTransition<S1,Action,S,L>
s1 A> Automaton<$1,Action,S,T>
S > State<S1> 12> Label<Action>
L > Label<Action> T2> ModalTransition<S1,Action,§,L2:
T>ModalTransition<S1,Action,S,L: A2> Automaton<S1,Action,5,T2>
A>Automaton<S1,Action,S,T>

Modeld '|<
‘ s1 R
Function | I
o MpcSynthesisOperator
OrchestrationSynthesisOperator
s1
L> Label<Action:
ChoreographySynthesisOperator
Function|
RelabelingOperator ProductOrchestrationSynthesisOperator

D.B. et al. (ISTI CNR Contract Automata T-Ladies Kick-off July 2022

XooooOeeEeEEEEEEEEEEE

Software Support

@ CATLib : library implementing contract automata and their
operations;

@ CAT_App : GUI for designing contract automata;

@ CARE : Runtime Environment for implementing applications specified
via contract automata (work in progress);

https://github.com/contractautomataproject

D.B. et al. (ISTI CNR Pisa) Contract Automata T-Ladies Kick-off July 2022

https://github.com/contractautomataproject

‘ |£] C:\Users\Davide" ntre utomataLib\src\test\resources\Orc_(ClientxCl

File Edit View MSCA FMCA TSCA Help

Q7

State Edge

DAL B DRX DN

Toggle Initial state

Toggle Final state

-0

¥ Delete
4 Cut
B Copy

482, 319

D.B. et al. (ISTI CNR Pisa) Contract Automata

T-Ladies Kick-off July 2022

Xooooooomss

CATLib Example Tic-tac-toe

IX_0
Pt

~
[10_0]
[_0]

[0_0]

//create a list of automata, one for each position, to write either X or O in that position
List<Automaton<String,Action,State<String>,ModalTransition<String, Action, State<String>,
CALabel>>> aut = IntStream.range(0, size).mapToObj(i -> {
State<String> cs_can = new State<>(List.of(new BasicState<>("_" + i, true, true)));
State<String> cs_cross = new State<>(List.of (new BasicState<>(Cross.cross+"_"+i,false,true)));
State<String> cs_circle = new State<>(List.of (new BasicState<>(Circle.circle+"_"+i,false,true)));
return new Automaton<>(Map.of(Cross.cross, cs_cross, Circle.circle, cs_circle)
.entrySet().stream() .map(e -> new ModalTransition<>(cs_can,
new CALabel(1, 0, new OfferAction(e.getKey() + "_" + i)),
e.getValue(), ModalTransition.Modality.PERMITTED))
.collect(Collectors.toSet()));}).collect(Collectors.toList());

et al. (ISTI CNR Pisa) Contract Automata T-Ladies Kick-off July 2022

8/21

Xoooooooos

CATLib Example Tic-tac-toe

[7X_0] ... [?X_8]

[?0_0] ... [70_8]

[Turn_Cross] [Turn_Circle]

//creating an automaton requiring turns between X and 0
State<String> cs_cross = new State<>(List.of (new BasicState<>("TurnCross", true, true)));
State<String> cs_circle = new State<>(List.of(new BasicState<>("TurnCircle", false, true)));
aut.add(new Automaton<>(Stream.concat(//add cross turn and circle turn transitions
actionsCross.stream() .map(ac -> new ModalTransition<>(cs_cross, new CALabel(l, 0, ac),
cs_circle, ModalTransition.Modality.PERMITTED)),
actionsCircle.stream() .map(ac -> new ModalTransition<>(cs_circle, new CALabel(l, 0, ac),
cs_cross, ModalTransition.Modality.PERMITTED))
).collect(Collectors.toSet())));

et al. (ISTI CNR Pisa) Contract Automata T-Ladies Kick-off July 2022

9/21

Xooooooooos

CATLib Example Tic-tac-toe

//computing the composition
MSCACompositionFunction<String> mcf = new MSCACompositionFunction<>(aut,
t -> { Grid m = new Grid(t.getSource().toString());
return new StrongAgreement().negate().test(t.getLabel()) || m.win() || m.tie();});
return mcf.apply(Integer.MAX_VALUE);

//turning the opponent to uncontrollable and mark winning states

//mpc synthesis
MpcSynthesisOperator<String> mso = new MpcSynthesisOperator<>(l->true);
return mso.apply(new Automaton<>(transitions));

App.java
//application main cycle
currentState = strategy.getInitial(); /* the game starts from the initial state */
while(currentState!=null){ //the forward star is the set of possible nezt moves in the game
Set<ModalTransition<String,Action,State<String>,CALabel>> forwardStar =
strategy.getForwardStar (currentState) ;
//checking if a winning or tying state is reached, otherwise exzecute one turn
if (check(forwardStar)) { currentState=null; } else {
Symbol turn = (currentState.getState().get(9).getState().equals("TurnCross"))?
new Cross() : new Circle();
if (player.getClass().equals(turn.getClass()))
{ /* user turn */ currentState = insertPlayer(scan,forwardstar); X
else { /* computer turn */ currentState = insertOpponent(forwardStar); }
System.out.println(new Grid(currentState.toString()));/* printing the grid */ } }

https //github.com/contractautomataproject/tictactoe

et al. (ISTI CNR Pisa) Contract Automata T-Ladies Kick-off July 2022

10/21

https://github.com/contractautomataproject/tictactoe

XoooooooooOesEsEsEsEEEEE

CATLib Evaluation

Phase ‘ Name

Continuous integration | GitHub Actions

Build Maven

Testing JaCoCo, Coveralls, SonarCloud

Unit testing Mockito

Mutation testing PITest, Stryker

Analysis SonarCloud, IntelliJ, CodeQL, SpotBugs, Codiga, Codacy

Table 1: Frameworks and services used for evaluating CATLib

Source code ‘ Testing
Measure ‘ Value ‘ Measure ‘ Value
LOC 2519 Total unit tests 462
Total lines 5152 Total integration tests 105
Statements 947 Total tests 567
Functions 223 Unit tests (LOC) 4565
Classes 49 Integration tests (LOC) 1526
Comment lines 1139 Total tests (LOC) 6091
Comments (%) 31.1 [Tests line coverage (%) 100
Lines to cover 1238 Tests branch coverage (%) | 100
Conditions to cover 626 Total mutants 795
Cyclomatic complexity | 630 Killed mutants 780
Cognitive complexity 287 Timed out mutants 12
Tests ran 1173
Tests run per mutation 1.48
Test suite strength (%) 99.6

Table 2: Statistics of evaluating CATLib: source code and testing

D.B. et al. (ISTI CNR Pisa) Contract Automata T-Ladies Kick-off July 2022

XooooooooooOEsEeEEEEEE

Synthesis of Contract Automata

@ adapted from the Supervisory Control Theory for Discrete Event
Systems (SCT)

@ input: an FSA modelling a plant (with controllable and uncontrollable
events)

o forbidden states, marked states

@ output: a controller (i.e. a refinement) that is non-blocking, safe,
controllable and maximal,

@ the synthesis algorithm prunes transitions in a backward fashion and
updates the set of bad states R

D.B. et al. (ISTI CNR Pisa) Contract Automata T-Ladies Kick-off July 2022

XoooooooooooOeEsEsEEEEE

Abstract synthesis

@ the syntheses algorithms of the mpc, orchestration and choreography
differ in the way in which transitions are pruned and states are
deemed bad

@ it is possible to abstract away such conditions through

e pruning predicate ¢,
o forbidden predicate ¢r

D.B. et al. (ISTI CNR Pisa) Contract Automata T-Ladies Kick-off July 2022

XooooooooooooOeEsEEEE

Abstract synthesis

Definition
K o= Aand Ry = Dangling(C).

f&¢p1¢f)(lc ,'71,R,-,1) (IC,',R,‘), with
)

TIC,- = T’C,'71 \{(ai> =te TIC,;1 |¢P(t7K:i—17Rf—1) = true}
Ri=Ri.1U{q|(d—=)=teTY, ¢r(t,Ki-1,Ri—1) = true } U Dangling(K ;)

o ¢p(t,Ki_1,Ri_1) = true : prune transition
e ¢r(t,Ki_1,Ri_1) = true : source state is bad

oPe((q,3,d), K, R) = (§ € R) V (q is forbidden)
q),K,R) =

D.B. et al. (ISTI CNR Pisa) Contract Automata T-Ladies Kick-off July 2022

XoooooooooooooOEsEEEE

Semi-controllability, Mpc vs Orchestration vs Choreography
Ie

@ necessary — semi-controllable: existentially quantified

e it can be pruned as long as the same request is matched somewhere else

o°((d,a,d), K, R) = (d'is a request) V (¢’ € R)
$9<((4,3,4), K. R) = B(ds 2 ¢3') € TP : (3, is a match) A (@2, &5
Da”g/'"g(’C)) ANqy = q2(1)) A ag) = a2y = a)

D.B

.etal. (ISTI CNR Pisa)

Contract Automata

T-Ladies Kick-off July 2022

XooooooooooooooOsEsEE

Synthesis of Choreographies

@ the interactions with the orchestrator are implicit

@ principals can safely interact synchronously without orchestrator if a
specific condition is met

e principals perform their offers/outputs independently of the other
principals in the composition

o for each reachable pair of states g1, ¢

Va match action . (G135 A snd(3) = i A di(iy = Ga(i)) implies G2

(3'is a request or an offer)V (§ € R)V (3 ¢2 €

) =
Qk : (snd(3) = i) A (diy = G2ay) A (G2 _>¢ Tic))
¢Cor((57 _; é‘/)?]Cv R) = ﬂ(aa—2> q_é/) S TE . (32 is a match)/\ ((77 52/ €
Dangling(K)) A (a(jy = a2(i) =)

D.B. et al. (ISTI CNR Pisa) Contract Automata T-Ladies Kick-off July 2022

XoooooooooooooooOsEsEs

Product Lines

o FMCA = (A,p)

e family of service applications

o atoms = features = actions (as in MTS with variability)
o A1 ® A2 = puy A pa,
@ Products: truth assignments satisfying ¢

o required features (T): must be available in K
o forbidden features (F): must not be available in K

e orchestration of a product p of A= K4,
o further constraints on required and forbidden features of p
@ orchestration of a product line A = K 4

@ no need to generate all products!
e union of canonical products

D.B. et al. (ISTI CNR Pisa) Contract Automata T-Ladies Kick-off July 2022

XooooooooooooooooOomss

CARE - match implementation

alice

[?coffee, ! coffee]
Alice: Integer coffee(String arg)
Bob: String coffee(Integer arg)

ror alice
T

coffee

opens a fresh port 5
T

< Port |

i
address and pdrt of bob

T
|
|
'
|
|
|
'
|
'
|
'
|
'
|
'
|
|
|

- v1=alice.coffee(null)

A-

coffee, v1

v2=bob.coffee(v1l)

<
IN)

*

N
alice.coffee(v2)

.‘
=}
S

D.B. et al. (ISTI CNR Pisa) Contract Automata T-Ladies Kick-off July 2022

Xooooooooooooooooooss

Other arguments not covered...

@ weak agreement, MILP implementation of the algorithms (FORTE16);

@ relation with Propositional Contract Logic and Intuitionistic Linear
Logic with Mix (LMCS16);

e correspondence between CA and CFSM (supported by the software),
asynchronous systems, open systems (JLAMP16);

@ partial order of controllers (LMCS20);
@ real-time contract automata (ISSE20);
o distributed multi-agents systems (submitted to ISOLA22)

D.B. et al. (ISTI CNR Pisa) Contract Automata T-Ladies Kick-off July 2022

Xooooooooooooooooooos

Ongoing and Future work

more applications of CATLib, CARE
o that will open further research goals

support for choreographies of product lines is currently missing

CARE does not support neither choreographies nor product-lines

many others enhancements to do
https://github.com/orgs/contractautomataproject/projects/1

D.B. et al. (ISTI CNR Pisa) Contract Automata T-Ladies Kick-off July 2022

https://github.com/orgs/contractautomataproject/projects/1

Xoooooooooooooooooooo

Bibliography

@ Basile, D. and ter Beek, M.H., 2022. Contract automata library. To
appear in: Science of Computer Programming (Original Software
Publication).

o Pugliese, R., Ter Beek, M.H. and Basile, D., 2020. Synthesis of
orchestrations and choreographies: bridging the gap between
supervisory control and coordination of services. Logical Methods in
Computer Science, 16.

o Basile, D., ter Beek, M.H., Degano, P., Legay, A., Ferrari, G.L.,
Gnesi, S. and Di Giandomenico, F., 2020. Controller synthesis of
service contracts with variability. Science of Computer Programming,
187, p.102344.

@ Basile, D. and ter Beek, M.H., 2022. A Runtime Environment for
Contract Automata. arXiv preprint arXiv:2203.14122.

D.B. et al. (ISTI CNR Pisa) Contract Automata T-Ladies Kick-off July 2022

