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(Conceptually) infinite structures are hard to manage

E.g.: streams in loT contexts, infinite trees, ...

Main issues

® Representation
® Manipulation

e |dentification of ill-formed definitions
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Aim of the work

Design a calculus to:

® Finitely represent infinite streams
e Study properties of entire streams

e Statically check the correctness of stream definitions

Possible application: testing of loT systems

® Generation of complex streams

® Possibility of relying on common stream processing functions
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State of the art: lazy evaluation

Well-established solution for data stream generation and processing

Haskell examples:

® one_two = 1:2:0ne_two
® from n = n:from(n+1)

Operations that inspect the whole structure diverge
® one_two == one_two

Moreover, ill-formed definitions allowed:
® bad_stream = bad_stream

Well-definedness of streams not decidable in Haskell
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State of the art: Regular corecursion

Infinite streams finitely represented by sets of equations built only on the
stream constructor

Regular (cyclic) streams are supported

Functions are regularly corecursive:

® Execution keeps track of pending function calls
® Non-termination avoided

one_two() = 1:2:one_two() — x = 1:2:x
one_two() == one_two()) — true

However, fails to model non-regular streams
® No value for from(@)
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Our approach

Keeps the benefits of regular corecursion

Functions can also return non-regular streams

® repeat(n) = n:repeat(n)
from(n)=n: (from(n)[+]repeat (1))
pointwise addition [+] on streams allowed in equations similarly as the
stream constructor _: _

Decidable procedure to check whether a stream is well-defined
Only well-defined streams accepted at runtime

Decidable procedure to check the equality of two streams



Syntax of the calculus

fd = fd... fd,

fd == fix)=se

e = sel| ne| be

se = x| if bethen se; else se, | ne: se| se” | se;op se; | f€)
ne = x|se(ne)|neinopney |0|1]2]..

be = x|true]|false]|..

op == [nop]] |

nop = | — | x|

® Program = sequence of mutually recursive function declarations
® Functions can only return streams

® Expressions can be: streams, numeric values, booleans



® one_two() = 1:2:o0ne_two()

«4Or «F>r « >

« =

DA



Simple examples

® one_two() = 1:2:one_two()

one_two() — (x, {x — 1:2:x})



Simple examples

® one_two() = 1:2:one_two()

one_two() — (x, {x — 1:2:x})

® repeat(n) = n:repeat(n)



Simple examples

® one_two() = 1:2:one_two()
one_two() — (x, {x — 1:2:x})
® repeat(n) = n:repeat(n)

repeat(1) — (y, {y — 1:y})



Simple examples

one_two() = 1:2:one_two()

one_two() — (x, {x — 1:2:x})

repeat(n) = n:repeat(n)
repeat(1) — (y, {y — 1:y})

incr(s) = s[+]repeat(1)



Simple examples

® one_two() = 1:2:one_two()
one_two() — (x, {x — 1:2:x})
® repeat(n) = n:repeat(n)
repeat(1) — (y, {y = 1:y})
® incr(s) = s[+]repeat(1)

incr(one_two()) — (x[+]y,{x — 1:2:x, y — 1:y})



Simple examples
® one_two() = 1:2:one_two()
one_two() — (x, {x — 1:2:x})
® repeat(n) = n:repeat(n)
repeat(1) — (y, {y = 1:y})
® incr(s) = s[+]repeat(1)

incr(one_two()) — (x[+]y,{x — 1:2:x, y — 1:y})

incr(one_two()) (@)



Simple examples
® one_two() = 1:2:one_two()
one_two() — (x, {x — 1:2:x})
® repeat(n) = n:repeat(n)
repeat(1) — (y, {y = 1:y})
® incr(s) = s[+]repeat(1)
incr(one_two()) — (x[+]y,{x — 1:2:x, y — 1:y})

incr(one_two()) (0) — (x[+]y) (@)



Simple examples
® one_two() = 1:2:one_two()
one_two() — (x, {x — 1:2:x})
® repeat(n) = n:repeat(n)
repeat(1) — (y, {y = 1:y})
® incr(s) = s[+]repeat(1)
incr(one_two()) — (x[+]y,{x — 1:2:x, y — 1:y})

incr(one_two())(0) — (x[+1y) (@) — x(@)+y(0)



Simple examples

® one_two() = 1:2:one_two()

one_two() — (x, {x — 1:2:x})

® repeat(n) = n:repeat(n)
repeat(1) — (y, {y — 1:y})

® incr(s) = s[+]repeat(1)
incr(one_two()) — (x[+]y,{x — 1:2:x, y — 1:y})

incr(one_two())(0) — (x[+1y) (@) — x(@)+y(0) —
(1:2:x)(0)+(1:y) (@)



Simple examples

® one_two() = 1:2:one_two()

one_two() — (x, {x — 1:2:x})

® repeat(n) = n:repeat(n)
repeat(1) — (y, {y — 1:y})

® incr(s) = s[+]repeat(1)
incr(one_two()) — (x[+]y,{x — 1:2:x, y — 1:y})

incr(one_two())(0) — (x[+1y) (@) — x(@)+y(0) —
(1:2:x)(0)+(1:y) (0) —> 2
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Main ingredients of the calculus:

e Operational semantics: evaluation keeps track of already considered function
calls, streams represented in a finite way [AnconaBarbieriZucca®ICTCS21]

® \Well-definedness check to guarantee safe access to streams
[AnconaBarbieriZucca@F LOPS22], [Submitted journal paper]

® Decidable procedure to check the equality of two streams
[AnconaBarbieriZucca®ICTCS22], [Ongoing work]
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Semantics

® Shape of the judgment: e, p, 7 (v, o)
® e expression to be evaluated
® pI=X{+>S]...Xp > Sy environment
o ri=fH(v1)—=x1 ... fo(Vn) = X4 call trace

° (v,p))  result

® Values:
® vi=s|n|b value
® s:=x|n:s|s |sfop]sa  (open) stream value
*nu=0[1]2].. index, numeric value
® b:=true | false boolean value
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Examples: non-regular streams

nat() = @:(nat()[+]repeat(1))
® stream of natural numbers

nat_to_pow(n) = if n <= @ then repeat(1)
else nat_to_pow(n-1)[*Inat()
® nat_to_pow(n)(x)= x"

pow(n) = 1:(repeat(n)[*]Jpow(n))
® pow(n) (x)=n"

fact() = 1:((nat()[+]repeat(1))[*]fact())
e factorial

fib() = @:1: (fibO)[+1fib()")
® stream of Fibonacci numbers
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Examples: common functions on streams

sum(s) = s(@): (s "[+Isum(s))
® stream of partial sums of the first i+1 elements of s

* sum(s) (i) = > 4_, s(k)

sum_expn(n)= sum(pow(n)[/JIfact())
® stream of all terms of the Taylor series of the exponential function
) .

o sum,expn(n)(i):2i20%21+n+g—j+g—j+’;—i+~--+%
aggr(n,s) = if n<=0 then repeat(0)
else s[+]aggr(n-1,s")
® aggr(3,s) =s'st. /(i) =s(i)+s(i+1)+s(i+2)

avg (n,s) = aggr (n,s )[/] repeat (n)
® stream of average values of s in the window of length n



Well-definedness of streams



Well-definedness

Definition

Well-defined environment p: for each x € dom(p), access to element x(k)
terminates for all kK € N.



Well-definedness

Definition

Well-defined environment p: for each x € dom(p), access to element x(k)
terminates for all kK € N.

Examples

X — 1:2:x
y = x°



Well-definedness

Definition

Well-defined environment p: for each x € p, access to element x(k) terminates
for all k € N.

Examples

X — 1:2:X
y — x°



Well-definedness

Definition

Well-defined environment p: for each x € p, access to element x(k) terminates
for all k € N.

Examples

X — 1:2:x X — 1:y
y = x° y =y



Well-definedness

Definition

Well-defined environment p: for each x € p, access to element x(k) terminates
for all k € N.

Examples

X — 1:2:X X — 1y
y = x° y =y
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Equality

e Stream operators in equations = non-trivial equational theory

® Syntactic equality between cyclic terms provides a too weak notion

Semantic definition

s1 = s, iff, for each k € N, s1(k) = s2(k)
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An algorithm: examples

Environment p={x — 1:x, y = 1:1:y }

X =y
1
1:x = 1:1:y
1
X =1y
1
1:x = 1:y
1
X =Y
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Relevant tasks and future work

Task 1.1 (Adaptation)

® Only streams of naturals with arithmetic operators considered in the calculus
Aims:

® Make the calculus parametric

® Indeed, smoothly extending the approach to other data types (booleans,
pairs, records, ...)

® ec.g., an if_then_else_ stream operator whose first argument is a stream of
booleans



Relevant tasks and future work

Task 3.2 (Integration of static and dynamic verification)

® Untyped calculus



Relevant tasks and future work

Task 3.2 (Integration of static and dynamic verification)

® Untyped calculus

® The well-definedness check takes place at runtime



Relevant tasks and future work

Task 3.2 (Integration of static and dynamic verification)

® Untyped calculus

® The well-definedness check takes place at runtime

Aims:

® Design a static type system to filter out early errors



Relevant tasks and future work

Task 3.2 (Integration of static and dynamic verification)

® Untyped calculus

® The well-definedness check takes place at runtime

Aims:

® Design a static type system to filter out early errors

® Reduce runtime overhead identifying ill-formed definitions ahead
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Relevant tasks and future work

Task 4.4 (Application scenarios)

® Possibility to generate and manipulate a wide variety of streams

® |oT relevant operations supported

Aims:

® |ntegration with stream programming:
e Stream generation (sink streams) already supported

® Source streams, pipeline to be investigated
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Example of equality

Environment  p={x > 0:1:(x || ), y = 0:1:((2:y) || v) }

0:1:(x || x) =0:1:(2:y) || y)
L
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Extras

Semantics of the calculus



Rules (1)

be, p, 7} (true, p) ser,p, 7 (s,p)
v, p, T (v, p) "If be then se; else sex, p, TU(s, p')

(VAL)

be, p, | (false,p) sex, p, 7 (s, p) ne,p, 7 (n,p) se p, 7 (s, p)

"IF be then se, else sex, p, (s, p') T e se,p, 7 (n: s, p)

se,p,TU(s,p’) Sel7p77-‘U’(517p1) Se2ap77—‘U’(527/02)
~ ~ 7 (o)
se”, p, 7I(s™, p) sejop sez, p, 7 (s10p s2, p1 U p2)

(TAIL)



Rules (2)

- e p, T (vi,p)) Viel.n V), p,7I(sp) ‘ii il in not of shape v
ARGS E’ 77_ S’ / A_
fe),p,74(s, ') P:Ue1nP:

f(v) ¢ dom(7)
se[v/X], p, T{f(V) = x} U (s, p')  x fresh

V), p, 74 (x, p'{x > s}) fbody(f) = (, se)
wd(p', x, s)

(INVK)

(corEC)

o) D



Extras

Well-definedness



Well-definedness: an algorithm

m = x> np...xp— ng (n>0) map from variables to natural numbers
Wy (x.0) wd (p(x), m{x = 0}) C wdy(s ™)
(MAIN) (WD-VAR) X ¢ dom(m) (WD-CONS)
wd(p, x, v) wd,(x, m) wd,(n: s, m)

x € dom(m) wd,(s,m™")

WD-COREC) — WD-FV)— — d WD-TAIL) =™~ , ~  ~

( )wdp(x, m) m(x) >0 ( >wdp(x, m) x & dom(p) ( ) wd,(s”, m)
wd,(s1,m) wd,(sz, m) wd,(s1,m) wd,(s2, m™)

(WD-NOP) (wo-|)

wd,(s1[op ]s2, m) wd,(s1ls2, m)

Idea: more constructors than tail operators traversed when a cyclic reference is found



On well-definedness

® zeros()= repeat(®)[*] zeros()

® Not well-defined operationally but admits a unique solution



On well-definedness

® A closed result (s, p) is well-defined if it denotes a unique stream

e A closed environment p is well-defined if, for each x € dom(p), (x, p) is
well-defined.

® = the corresponding set of equations admits a unique solution
® {x—1: x} well-defined
® {x— x} not well-defined

* {x+— x[+]y,y+— 1: y} not well-defined



