
Non-regular corecursive streams

Pietro Barbieri
Joint work with: Davide Ancona and Elena Zucca

DIBRIS, University of Genova

T-LADIES kick-off meeting
July 6-7, 2022

Problem description

(Conceptually) infinite structures are hard to manage

E.g.: streams in IoT contexts, infinite trees, . . .

Main issues

• Representation

• Manipulation

• Identification of ill-formed definitions

Problem description

(Conceptually) infinite structures are hard to manage

E.g.: streams in IoT contexts, infinite trees, . . .

Main issues

• Representation

• Manipulation

• Identification of ill-formed definitions

Problem description

(Conceptually) infinite structures are hard to manage

E.g.: streams in IoT contexts, infinite trees, . . .

Main issues

• Representation

• Manipulation

• Identification of ill-formed definitions

Problem description

(Conceptually) infinite structures are hard to manage

E.g.: streams in IoT contexts, infinite trees, . . .

Main issues

• Representation

• Manipulation

• Identification of ill-formed definitions

Aim of the work

Design a calculus to:

• Finitely represent infinite streams

• Study properties of entire streams

• Statically check the correctness of stream definitions

Possible application: testing of IoT systems

• Generation of complex streams

• Possibility of relying on common stream processing functions

Aim of the work

Design a calculus to:

• Finitely represent infinite streams

• Study properties of entire streams

• Statically check the correctness of stream definitions

Possible application: testing of IoT systems

• Generation of complex streams

• Possibility of relying on common stream processing functions

Aim of the work

Design a calculus to:

• Finitely represent infinite streams

• Study properties of entire streams

• Statically check the correctness of stream definitions

Possible application: testing of IoT systems

• Generation of complex streams

• Possibility of relying on common stream processing functions

Aim of the work

Design a calculus to:

• Finitely represent infinite streams

• Study properties of entire streams

• Statically check the correctness of stream definitions

Possible application: testing of IoT systems

• Generation of complex streams

• Possibility of relying on common stream processing functions

Aim of the work

Design a calculus to:

• Finitely represent infinite streams

• Study properties of entire streams

• Statically check the correctness of stream definitions

Possible application: testing of IoT systems

• Generation of complex streams

• Possibility of relying on common stream processing functions

State of the art

State of the art: lazy evaluation

• Well-established solution for data stream generation and processing

• Haskell examples:
• one two = 1:2:one two
• from n = n:from(n+1)

• Operations that inspect the whole structure diverge
• one two == one two

• Moreover, ill-formed definitions allowed:
• bad stream = bad stream

• Well-definedness of streams not decidable in Haskell

State of the art: lazy evaluation

• Well-established solution for data stream generation and processing

• Haskell examples:

• one two = 1:2:one two
• from n = n:from(n+1)

• Operations that inspect the whole structure diverge
• one two == one two

• Moreover, ill-formed definitions allowed:
• bad stream = bad stream

• Well-definedness of streams not decidable in Haskell

State of the art: lazy evaluation

• Well-established solution for data stream generation and processing

• Haskell examples:
• one two = 1:2:one two

• from n = n:from(n+1)

• Operations that inspect the whole structure diverge
• one two == one two

• Moreover, ill-formed definitions allowed:
• bad stream = bad stream

• Well-definedness of streams not decidable in Haskell

State of the art: lazy evaluation

• Well-established solution for data stream generation and processing

• Haskell examples:
• one two = 1:2:one two
• from n = n:from(n+1)

• Operations that inspect the whole structure diverge
• one two == one two

• Moreover, ill-formed definitions allowed:
• bad stream = bad stream

• Well-definedness of streams not decidable in Haskell

State of the art: lazy evaluation

• Well-established solution for data stream generation and processing

• Haskell examples:
• one two = 1:2:one two
• from n = n:from(n+1)

• Operations that inspect the whole structure diverge

• one two == one two

• Moreover, ill-formed definitions allowed:
• bad stream = bad stream

• Well-definedness of streams not decidable in Haskell

State of the art: lazy evaluation

• Well-established solution for data stream generation and processing

• Haskell examples:
• one two = 1:2:one two
• from n = n:from(n+1)

• Operations that inspect the whole structure diverge
• one two == one two

• Moreover, ill-formed definitions allowed:
• bad stream = bad stream

• Well-definedness of streams not decidable in Haskell

State of the art: lazy evaluation

• Well-established solution for data stream generation and processing

• Haskell examples:
• one two = 1:2:one two
• from n = n:from(n+1)

• Operations that inspect the whole structure diverge
• one two == one two

• Moreover, ill-formed definitions allowed:

• bad stream = bad stream

• Well-definedness of streams not decidable in Haskell

State of the art: lazy evaluation

• Well-established solution for data stream generation and processing

• Haskell examples:
• one two = 1:2:one two
• from n = n:from(n+1)

• Operations that inspect the whole structure diverge
• one two == one two

• Moreover, ill-formed definitions allowed:
• bad stream = bad stream

• Well-definedness of streams not decidable in Haskell

State of the art: lazy evaluation

• Well-established solution for data stream generation and processing

• Haskell examples:
• one two = 1:2:one two
• from n = n:from(n+1)

• Operations that inspect the whole structure diverge
• one two == one two

• Moreover, ill-formed definitions allowed:
• bad stream = bad stream

• Well-definedness of streams not decidable in Haskell

State of the art: Regular corecursion

• Infinite streams finitely represented by sets of equations built only on the
stream constructor

• Regular (cyclic) streams are supported

• Functions are regularly corecursive:
• Execution keeps track of pending function calls
• Non-termination avoided

• one two() = 1:2:one two() −→ x = 1:2:x

• one two() == one two()) −→ true

• However, fails to model non-regular streams
• No value for from(0)

State of the art: Regular corecursion

• Infinite streams finitely represented by sets of equations built only on the
stream constructor

• Regular (cyclic) streams are supported

• Functions are regularly corecursive:
• Execution keeps track of pending function calls
• Non-termination avoided

• one two() = 1:2:one two() −→ x = 1:2:x

• one two() == one two()) −→ true

• However, fails to model non-regular streams
• No value for from(0)

State of the art: Regular corecursion

• Infinite streams finitely represented by sets of equations built only on the
stream constructor

• Regular (cyclic) streams are supported

• Functions are regularly corecursive:

• Execution keeps track of pending function calls
• Non-termination avoided

• one two() = 1:2:one two() −→ x = 1:2:x

• one two() == one two()) −→ true

• However, fails to model non-regular streams
• No value for from(0)

State of the art: Regular corecursion

• Infinite streams finitely represented by sets of equations built only on the
stream constructor

• Regular (cyclic) streams are supported

• Functions are regularly corecursive:
• Execution keeps track of pending function calls

• Non-termination avoided

• one two() = 1:2:one two() −→ x = 1:2:x

• one two() == one two()) −→ true

• However, fails to model non-regular streams
• No value for from(0)

State of the art: Regular corecursion

• Infinite streams finitely represented by sets of equations built only on the
stream constructor

• Regular (cyclic) streams are supported

• Functions are regularly corecursive:
• Execution keeps track of pending function calls
• Non-termination avoided

• one two() = 1:2:one two() −→ x = 1:2:x

• one two() == one two()) −→ true

• However, fails to model non-regular streams
• No value for from(0)

State of the art: Regular corecursion

• Infinite streams finitely represented by sets of equations built only on the
stream constructor

• Regular (cyclic) streams are supported

• Functions are regularly corecursive:
• Execution keeps track of pending function calls
• Non-termination avoided

• one two() = 1:2:one two() −→ x = 1:2:x

• one two() == one two()) −→ true

• However, fails to model non-regular streams
• No value for from(0)

State of the art: Regular corecursion

• Infinite streams finitely represented by sets of equations built only on the
stream constructor

• Regular (cyclic) streams are supported

• Functions are regularly corecursive:
• Execution keeps track of pending function calls
• Non-termination avoided

• one two() = 1:2:one two() −→ x = 1:2:x

• one two() == one two()) −→ true

• However, fails to model non-regular streams
• No value for from(0)

State of the art: Regular corecursion

• Infinite streams finitely represented by sets of equations built only on the
stream constructor

• Regular (cyclic) streams are supported

• Functions are regularly corecursive:
• Execution keeps track of pending function calls
• Non-termination avoided

• one two() = 1:2:one two() −→ x = 1:2:x

• one two() == one two()) −→ true

• However, fails to model non-regular streams

• No value for from(0)

State of the art: Regular corecursion

• Infinite streams finitely represented by sets of equations built only on the
stream constructor

• Regular (cyclic) streams are supported

• Functions are regularly corecursive:
• Execution keeps track of pending function calls
• Non-termination avoided

• one two() = 1:2:one two() −→ x = 1:2:x

• one two() == one two()) −→ true

• However, fails to model non-regular streams
• No value for from(0)

Non-regular corecursive streams

Our approach

• Keeps the benefits of regular corecursion

• Functions can also return non-regular streams

• repeat(n) = n:repeat(n)
from(n)=n:(from(n)[+]repeat(1))

pointwise addition [+] on streams allowed in equations similarly as the
stream constructor :

• Decidable procedure to check whether a stream is well-defined

• Only well-defined streams accepted at runtime

• Decidable procedure to check the equality of two streams

Our approach

• Keeps the benefits of regular corecursion

• Functions can also return non-regular streams

• repeat(n) = n:repeat(n)
from(n)=n:(from(n)[+]repeat(1))

pointwise addition [+] on streams allowed in equations similarly as the
stream constructor :

• Decidable procedure to check whether a stream is well-defined

• Only well-defined streams accepted at runtime

• Decidable procedure to check the equality of two streams

Our approach

• Keeps the benefits of regular corecursion

• Functions can also return non-regular streams

• repeat(n) = n:repeat(n)
from(n)=n:(from(n)[+]repeat(1))

pointwise addition [+] on streams allowed in equations similarly as the
stream constructor :

• Decidable procedure to check whether a stream is well-defined

• Only well-defined streams accepted at runtime

• Decidable procedure to check the equality of two streams

Our approach

• Keeps the benefits of regular corecursion

• Functions can also return non-regular streams

• repeat(n) = n:repeat(n)
from(n)=n:(from(n)[+]repeat(1))

pointwise addition [+] on streams allowed in equations similarly as the
stream constructor :

• Decidable procedure to check whether a stream is well-defined

• Only well-defined streams accepted at runtime

• Decidable procedure to check the equality of two streams

Our approach

• Keeps the benefits of regular corecursion

• Functions can also return non-regular streams

• repeat(n) = n:repeat(n)
from(n)=n:(from(n)[+]repeat(1))

pointwise addition [+] on streams allowed in equations similarly as the
stream constructor :

• Decidable procedure to check whether a stream is well-defined

• Only well-defined streams accepted at runtime

• Decidable procedure to check the equality of two streams

Our approach

• Keeps the benefits of regular corecursion

• Functions can also return non-regular streams

• repeat(n) = n:repeat(n)
from(n)=n:(from(n)[+]repeat(1))

pointwise addition [+] on streams allowed in equations similarly as the
stream constructor :

• Decidable procedure to check whether a stream is well-defined

• Only well-defined streams accepted at runtime

• Decidable procedure to check the equality of two streams

Syntax of the calculus

fd :: = fd1 . . . fdn
fd :: = f(x) = se
e :: = se | ne | be
se :: = x | if be then se1 else se2 | ne : se | seˆ | se1op se2 | f(e)
ne :: = x | se(ne) | ne1 nop ne2 | 0 | 1 | 2 | ...
be :: = x | true | false | ...
op :: = [nop] | ∥
nop :: = + | − | ∗ | /

• Program = sequence of mutually recursive function declarations

• Functions can only return streams

• Expressions can be: streams, numeric values, booleans

Simple examples

• one two() = 1:2:one two()

one two() −→ (x, {x 7→ 1:2:x})

• repeat(n) = n:repeat(n)

repeat(1) −→ (y, {y 7→ 1:y})

• incr(s) = s[+]repeat(1)

incr(one two()) −→ (x[+]y,{x 7→ 1:2:x, y 7→ 1:y})

incr(one two())(0) −→ (x[+]y)(0) −→ x(0)+y(0) −→
(1:2:x)(0)+(1:y)(0) −→ 2

Simple examples

• one two() = 1:2:one two()

one two() −→ (x, {x 7→ 1:2:x})

• repeat(n) = n:repeat(n)

repeat(1) −→ (y, {y 7→ 1:y})

• incr(s) = s[+]repeat(1)

incr(one two()) −→ (x[+]y,{x 7→ 1:2:x, y 7→ 1:y})

incr(one two())(0) −→ (x[+]y)(0) −→ x(0)+y(0) −→
(1:2:x)(0)+(1:y)(0) −→ 2

Simple examples

• one two() = 1:2:one two()

one two() −→ (x, {x 7→ 1:2:x})

• repeat(n) = n:repeat(n)

repeat(1) −→ (y, {y 7→ 1:y})

• incr(s) = s[+]repeat(1)

incr(one two()) −→ (x[+]y,{x 7→ 1:2:x, y 7→ 1:y})

incr(one two())(0) −→ (x[+]y)(0) −→ x(0)+y(0) −→
(1:2:x)(0)+(1:y)(0) −→ 2

Simple examples

• one two() = 1:2:one two()

one two() −→ (x, {x 7→ 1:2:x})

• repeat(n) = n:repeat(n)

repeat(1) −→ (y, {y 7→ 1:y})

• incr(s) = s[+]repeat(1)

incr(one two()) −→ (x[+]y,{x 7→ 1:2:x, y 7→ 1:y})

incr(one two())(0) −→ (x[+]y)(0) −→ x(0)+y(0) −→
(1:2:x)(0)+(1:y)(0) −→ 2

Simple examples

• one two() = 1:2:one two()

one two() −→ (x, {x 7→ 1:2:x})

• repeat(n) = n:repeat(n)

repeat(1) −→ (y, {y 7→ 1:y})

• incr(s) = s[+]repeat(1)

incr(one two()) −→ (x[+]y,{x 7→ 1:2:x, y 7→ 1:y})

incr(one two())(0) −→ (x[+]y)(0) −→ x(0)+y(0) −→
(1:2:x)(0)+(1:y)(0) −→ 2

Simple examples

• one two() = 1:2:one two()

one two() −→ (x, {x 7→ 1:2:x})

• repeat(n) = n:repeat(n)

repeat(1) −→ (y, {y 7→ 1:y})

• incr(s) = s[+]repeat(1)

incr(one two()) −→ (x[+]y,{x 7→ 1:2:x, y 7→ 1:y})

incr(one two())(0) −→ (x[+]y)(0) −→ x(0)+y(0) −→
(1:2:x)(0)+(1:y)(0) −→ 2

Simple examples

• one two() = 1:2:one two()

one two() −→ (x, {x 7→ 1:2:x})

• repeat(n) = n:repeat(n)

repeat(1) −→ (y, {y 7→ 1:y})

• incr(s) = s[+]repeat(1)

incr(one two()) −→ (x[+]y,{x 7→ 1:2:x, y 7→ 1:y})

incr(one two())(0)

−→ (x[+]y)(0) −→ x(0)+y(0) −→
(1:2:x)(0)+(1:y)(0) −→ 2

Simple examples

• one two() = 1:2:one two()

one two() −→ (x, {x 7→ 1:2:x})

• repeat(n) = n:repeat(n)

repeat(1) −→ (y, {y 7→ 1:y})

• incr(s) = s[+]repeat(1)

incr(one two()) −→ (x[+]y,{x 7→ 1:2:x, y 7→ 1:y})

incr(one two())(0) −→ (x[+]y)(0)

−→ x(0)+y(0) −→
(1:2:x)(0)+(1:y)(0) −→ 2

Simple examples

• one two() = 1:2:one two()

one two() −→ (x, {x 7→ 1:2:x})

• repeat(n) = n:repeat(n)

repeat(1) −→ (y, {y 7→ 1:y})

• incr(s) = s[+]repeat(1)

incr(one two()) −→ (x[+]y,{x 7→ 1:2:x, y 7→ 1:y})

incr(one two())(0) −→ (x[+]y)(0) −→ x(0)+y(0)

−→
(1:2:x)(0)+(1:y)(0) −→ 2

Simple examples

• one two() = 1:2:one two()

one two() −→ (x, {x 7→ 1:2:x})

• repeat(n) = n:repeat(n)

repeat(1) −→ (y, {y 7→ 1:y})

• incr(s) = s[+]repeat(1)

incr(one two()) −→ (x[+]y,{x 7→ 1:2:x, y 7→ 1:y})

incr(one two())(0) −→ (x[+]y)(0) −→ x(0)+y(0) −→
(1:2:x)(0)+(1:y)(0)

−→ 2

Simple examples

• one two() = 1:2:one two()

one two() −→ (x, {x 7→ 1:2:x})

• repeat(n) = n:repeat(n)

repeat(1) −→ (y, {y 7→ 1:y})

• incr(s) = s[+]repeat(1)

incr(one two()) −→ (x[+]y,{x 7→ 1:2:x, y 7→ 1:y})

incr(one two())(0) −→ (x[+]y)(0) −→ x(0)+y(0) −→
(1:2:x)(0)+(1:y)(0) −→ 2

Main ingredients of the calculus:

• Operational semantics: evaluation keeps track of already considered function
calls, streams represented in a finite way [AnconaBarbieriZucca@ICTCS21]

• Well-definedness check to guarantee safe access to streams
[AnconaBarbieriZucca@FLOPS22], [Submitted journal paper]

• Decidable procedure to check the equality of two streams
[AnconaBarbieriZucca@ICTCS22], [Ongoing work]

Main ingredients of the calculus:

• Operational semantics: evaluation keeps track of already considered function
calls, streams represented in a finite way [AnconaBarbieriZucca@ICTCS21]

• Well-definedness check to guarantee safe access to streams
[AnconaBarbieriZucca@FLOPS22], [Submitted journal paper]

• Decidable procedure to check the equality of two streams
[AnconaBarbieriZucca@ICTCS22], [Ongoing work]

Main ingredients of the calculus:

• Operational semantics: evaluation keeps track of already considered function
calls, streams represented in a finite way [AnconaBarbieriZucca@ICTCS21]

• Well-definedness check to guarantee safe access to streams
[AnconaBarbieriZucca@FLOPS22], [Submitted journal paper]

• Decidable procedure to check the equality of two streams
[AnconaBarbieriZucca@ICTCS22], [Ongoing work]

Semantics

• Shape of the judgment: e, ρ, τ ⇓(v, ρ′)

• e expression to be evaluated

• ρ ::= x1 7→ s1 . . . xn 7→ sn environment

• τ ::= f1(v1) 7→ x1 . . . fn(vn) 7→ xn call trace

• (v, ρ′) result

• Values:

• v ::= s | n | b value
• s ::= x | n : s | sˆ | s1[op]s2 (open) stream value
• n ::= 0 | 1 | 2 | ... index, numeric value
• b ::= true | false boolean value

Semantics

• Shape of the judgment: e, ρ, τ ⇓(v, ρ′)

• e expression to be evaluated

• ρ ::= x1 7→ s1 . . . xn 7→ sn environment

• τ ::= f1(v1) 7→ x1 . . . fn(vn) 7→ xn call trace

• (v, ρ′) result

• Values:

• v ::= s | n | b value
• s ::= x | n : s | sˆ | s1[op]s2 (open) stream value
• n ::= 0 | 1 | 2 | ... index, numeric value
• b ::= true | false boolean value

Semantics

• Shape of the judgment: e, ρ, τ ⇓(v, ρ′)

• e expression to be evaluated

• ρ ::= x1 7→ s1 . . . xn 7→ sn environment

• τ ::= f1(v1) 7→ x1 . . . fn(vn) 7→ xn call trace

• (v, ρ′) result

• Values:

• v ::= s | n | b value
• s ::= x | n : s | sˆ | s1[op]s2 (open) stream value
• n ::= 0 | 1 | 2 | ... index, numeric value
• b ::= true | false boolean value

Semantics

• Shape of the judgment: e, ρ, τ ⇓(v, ρ′)

• e expression to be evaluated

• ρ ::= x1 7→ s1 . . . xn 7→ sn environment

• τ ::= f1(v1) 7→ x1 . . . fn(vn) 7→ xn call trace

• (v, ρ′) result

• Values:

• v ::= s | n | b value
• s ::= x | n : s | sˆ | s1[op]s2 (open) stream value
• n ::= 0 | 1 | 2 | ... index, numeric value
• b ::= true | false boolean value

Semantics

• Shape of the judgment: e, ρ, τ ⇓(v, ρ′)

• e expression to be evaluated

• ρ ::= x1 7→ s1 . . . xn 7→ sn environment

• τ ::= f1(v1) 7→ x1 . . . fn(vn) 7→ xn call trace

• (v, ρ′) result

• Values:

• v ::= s | n | b value
• s ::= x | n : s | sˆ | s1[op]s2 (open) stream value
• n ::= 0 | 1 | 2 | ... index, numeric value
• b ::= true | false boolean value

Semantics

• Shape of the judgment: e, ρ, τ ⇓(v, ρ′)

• e expression to be evaluated

• ρ ::= x1 7→ s1 . . . xn 7→ sn environment

• τ ::= f1(v1) 7→ x1 . . . fn(vn) 7→ xn call trace

• (v, ρ′) result

• Values:

• v ::= s | n | b value
• s ::= x | n : s | sˆ | s1[op]s2 (open) stream value
• n ::= 0 | 1 | 2 | ... index, numeric value
• b ::= true | false boolean value

Semantics

• Shape of the judgment: e, ρ, τ ⇓(v, ρ′)

• e expression to be evaluated

• ρ ::= x1 7→ s1 . . . xn 7→ sn environment

• τ ::= f1(v1) 7→ x1 . . . fn(vn) 7→ xn call trace

• (v, ρ′) result

• Values:

• v ::= s | n | b value
• s ::= x | n : s | sˆ | s1[op]s2 (open) stream value

• n ::= 0 | 1 | 2 | ... index, numeric value
• b ::= true | false boolean value

Semantics

• Shape of the judgment: e, ρ, τ ⇓(v, ρ′)

• e expression to be evaluated

• ρ ::= x1 7→ s1 . . . xn 7→ sn environment

• τ ::= f1(v1) 7→ x1 . . . fn(vn) 7→ xn call trace

• (v, ρ′) result

• Values:

• v ::= s | n | b value
• s ::= x | n : s | sˆ | s1[op]s2 (open) stream value
• n ::= 0 | 1 | 2 | ... index, numeric value
• b ::= true | false boolean value

Advanced examples

Examples: non-regular streams

nat() = 0:(nat()[+]repeat(1))
• stream of natural numbers

nat to pow(n) = if n <= 0 then repeat(1)
else nat to pow(n-1)[*]nat()

• nat to pow(n)(x)= xn

pow(n) = 1:(repeat(n)[*]pow(n))
• pow(n)(x)= nx

fact() = 1:((nat()[+]repeat(1))[*]fact())
• factorial

fib() = 0:1:(fib()[+]fib()ˆ)
• stream of Fibonacci numbers

Examples: non-regular streams

nat() = 0:(nat()[+]repeat(1))
• stream of natural numbers

nat to pow(n) = if n <= 0 then repeat(1)
else nat to pow(n-1)[*]nat()

• nat to pow(n)(x)= xn

pow(n) = 1:(repeat(n)[*]pow(n))
• pow(n)(x)= nx

fact() = 1:((nat()[+]repeat(1))[*]fact())
• factorial

fib() = 0:1:(fib()[+]fib()ˆ)
• stream of Fibonacci numbers

Examples: non-regular streams

nat() = 0:(nat()[+]repeat(1))
• stream of natural numbers

nat to pow(n) = if n <= 0 then repeat(1)
else nat to pow(n-1)[*]nat()

• nat to pow(n)(x)= xn

pow(n) = 1:(repeat(n)[*]pow(n))
• pow(n)(x)= nx

fact() = 1:((nat()[+]repeat(1))[*]fact())
• factorial

fib() = 0:1:(fib()[+]fib()ˆ)
• stream of Fibonacci numbers

Examples: non-regular streams

nat() = 0:(nat()[+]repeat(1))
• stream of natural numbers

nat to pow(n) = if n <= 0 then repeat(1)
else nat to pow(n-1)[*]nat()

• nat to pow(n)(x)= xn

pow(n) = 1:(repeat(n)[*]pow(n))
• pow(n)(x)= nx

fact() = 1:((nat()[+]repeat(1))[*]fact())
• factorial

fib() = 0:1:(fib()[+]fib()ˆ)
• stream of Fibonacci numbers

Examples: non-regular streams

nat() = 0:(nat()[+]repeat(1))
• stream of natural numbers

nat to pow(n) = if n <= 0 then repeat(1)
else nat to pow(n-1)[*]nat()

• nat to pow(n)(x)= xn

pow(n) = 1:(repeat(n)[*]pow(n))
• pow(n)(x)= nx

fact() = 1:((nat()[+]repeat(1))[*]fact())
• factorial

fib() = 0:1:(fib()[+]fib()ˆ)
• stream of Fibonacci numbers

Examples: common functions on streams

sum(s)= s(0):(sˆ[+]sum(s))

• stream of partial sums of the first i+1 elements of s
• sum(s)(i) =

∑i
k=0 s(k)

sum_expn(n)= sum(pow(n)[/]fact())
• stream of all terms of the Taylor series of the exponential function
• sum expn(n)(i)=

∑i
k=0

nk

k!
= 1+ n+ n2

2!
+ n3

3!
+ n4

4!
+ · · ·+ ni

i!

aggr(n,s) = if n<=0 then repeat (0)
else s[+] aggr(n-1,sˆ)

• aggr(3,s) = s′ s.t. s′(i) = s(i) + s(i+ 1) + s(i+ 2)

avg (n,s) = aggr (n,s)[/] repeat (n)
• stream of average values of s in the window of length n

Examples: common functions on streams

sum(s)= s(0):(sˆ[+]sum(s))
• stream of partial sums of the first i+1 elements of s
• sum(s)(i) =

∑i
k=0 s(k)

sum_expn(n)= sum(pow(n)[/]fact())
• stream of all terms of the Taylor series of the exponential function
• sum expn(n)(i)=

∑i
k=0

nk

k!
= 1+ n+ n2

2!
+ n3

3!
+ n4

4!
+ · · ·+ ni

i!

aggr(n,s) = if n<=0 then repeat (0)
else s[+] aggr(n-1,sˆ)

• aggr(3,s) = s′ s.t. s′(i) = s(i) + s(i+ 1) + s(i+ 2)

avg (n,s) = aggr (n,s)[/] repeat (n)
• stream of average values of s in the window of length n

Examples: common functions on streams

sum(s)= s(0):(sˆ[+]sum(s))
• stream of partial sums of the first i+1 elements of s
• sum(s)(i) =

∑i
k=0 s(k)

sum_expn(n)= sum(pow(n)[/]fact())

• stream of all terms of the Taylor series of the exponential function
• sum expn(n)(i)=

∑i
k=0

nk

k!
= 1+ n+ n2

2!
+ n3

3!
+ n4

4!
+ · · ·+ ni

i!

aggr(n,s) = if n<=0 then repeat (0)
else s[+] aggr(n-1,sˆ)

• aggr(3,s) = s′ s.t. s′(i) = s(i) + s(i+ 1) + s(i+ 2)

avg (n,s) = aggr (n,s)[/] repeat (n)
• stream of average values of s in the window of length n

Examples: common functions on streams

sum(s)= s(0):(sˆ[+]sum(s))
• stream of partial sums of the first i+1 elements of s
• sum(s)(i) =

∑i
k=0 s(k)

sum_expn(n)= sum(pow(n)[/]fact())
• stream of all terms of the Taylor series of the exponential function
• sum expn(n)(i)=

∑i
k=0

nk

k!
= 1+ n+ n2

2!
+ n3

3!
+ n4

4!
+ · · ·+ ni

i!

aggr(n,s) = if n<=0 then repeat (0)
else s[+] aggr(n-1,sˆ)

• aggr(3,s) = s′ s.t. s′(i) = s(i) + s(i+ 1) + s(i+ 2)

avg (n,s) = aggr (n,s)[/] repeat (n)
• stream of average values of s in the window of length n

Examples: common functions on streams

sum(s)= s(0):(sˆ[+]sum(s))
• stream of partial sums of the first i+1 elements of s
• sum(s)(i) =

∑i
k=0 s(k)

sum_expn(n)= sum(pow(n)[/]fact())
• stream of all terms of the Taylor series of the exponential function
• sum expn(n)(i)=

∑i
k=0

nk

k!
= 1+ n+ n2

2!
+ n3

3!
+ n4

4!
+ · · ·+ ni

i!

aggr(n,s) = if n<=0 then repeat (0)
else s[+] aggr(n-1,sˆ)

• aggr(3,s) = s′ s.t. s′(i) = s(i) + s(i+ 1) + s(i+ 2)

avg (n,s) = aggr (n,s)[/] repeat (n)
• stream of average values of s in the window of length n

Examples: common functions on streams

sum(s)= s(0):(sˆ[+]sum(s))
• stream of partial sums of the first i+1 elements of s
• sum(s)(i) =

∑i
k=0 s(k)

sum_expn(n)= sum(pow(n)[/]fact())
• stream of all terms of the Taylor series of the exponential function
• sum expn(n)(i)=

∑i
k=0

nk

k!
= 1+ n+ n2

2!
+ n3

3!
+ n4

4!
+ · · ·+ ni

i!

aggr(n,s) = if n<=0 then repeat (0)
else s[+] aggr(n-1,sˆ)

• aggr(3,s) = s′ s.t. s′(i) = s(i) + s(i+ 1) + s(i+ 2)

avg (n,s) = aggr (n,s)[/] repeat (n)
• stream of average values of s in the window of length n

Well-definedness of streams

Well-definedness

Definition

Well-defined environment ρ: for each x ∈ dom(ρ), access to element x(k)
terminates for all k ∈ N.

Examples {
x 7→ 1:2:x
y 7→ xˆ

}

Well-definedness

Definition

Well-defined environment ρ: for each x ∈ dom(ρ), access to element x(k)
terminates for all k ∈ N.

Examples {
x 7→ 1:2:x
y 7→ xˆ

}

Well-definedness

Definition

Well-defined environment ρ: for each x ∈ ρ, access to element x(k) terminates
for all k ∈ N.

Examples {
x 7→ 1:2:x
y 7→ xˆ

}

Well-definedness

Definition

Well-defined environment ρ: for each x ∈ ρ, access to element x(k) terminates
for all k ∈ N.

Examples {
x 7→ 1:2:x
y 7→ xˆ

} {
x 7→ 1:y
y 7→ y

}

Well-definedness

Definition

Well-defined environment ρ: for each x ∈ ρ, access to element x(k) terminates
for all k ∈ N.

Examples {
x 7→ 1:2:x
y 7→ xˆ

} {
x 7→ 1:y
y 7→ y

}

Equality of streams

Equality

• Stream operators in equations = non-trivial equational theory

• Syntactic equality between cyclic terms provides a too weak notion

Semantic definition

s1 ≡ s2 iff, for each k ∈ N, s1(k) = s2(k)

Equality

• Stream operators in equations = non-trivial equational theory

• Syntactic equality between cyclic terms provides a too weak notion

Semantic definition

s1 ≡ s2 iff, for each k ∈ N, s1(k) = s2(k)

Equality

• Stream operators in equations = non-trivial equational theory

• Syntactic equality between cyclic terms provides a too weak notion

Semantic definition

s1 ≡ s2 iff, for each k ∈ N, s1(k) = s2(k)

An algorithm: examples

Environment ρ ={x 7→ 1:x}

x ≡ xˆ

↓

x ≡ (1:x)ˆ

↓
x ≡ x

An algorithm: examples

Environment ρ ={x 7→ 1:x}

x ≡ xˆ

↓

x ≡ (1:x)ˆ

↓
x ≡ x

An algorithm: examples

Environment ρ ={x 7→ 1:x}

x ≡ xˆ

↓

x ≡ (1:x)ˆ

↓
x ≡ x

An algorithm: examples

Environment ρ ={x 7→ 1:x, y 7→ 1:1:y }

x ≡ y

↓
1:x ≡ 1:1:y

↓
x ≡ 1:y

↓
1:x ≡ 1:y

↓
x ≡ y

An algorithm: examples

Environment ρ ={x 7→ 1:x, y 7→ 1:1:y }

x ≡ y
↓

1:x ≡ 1:1:y

↓
x ≡ 1:y

↓
1:x ≡ 1:y

↓
x ≡ y

An algorithm: examples

Environment ρ ={x 7→ 1:x, y 7→ 1:1:y }

x ≡ y
↓

1:x ≡ 1:1:y
↓

x ≡ 1:y

↓
1:x ≡ 1:y

↓
x ≡ y

An algorithm: examples

Environment ρ ={x 7→ 1:x, y 7→ 1:1:y }

x ≡ y
↓

1:x ≡ 1:1:y
↓

x ≡ 1:y
↓

1:x ≡ 1:y

↓
x ≡ y

An algorithm: examples

Environment ρ ={x 7→ 1:x, y 7→ 1:1:y }

x ≡ y
↓

1:x ≡ 1:1:y
↓

x ≡ 1:y
↓

1:x ≡ 1:y
↓

x ≡ y

Relevant tasks and future work

Task 1.1 (Adaptation)

• Only streams of naturals with arithmetic operators considered in the calculus

Aims:

• Make the calculus parametric

• Indeed, smoothly extending the approach to other data types (booleans,
pairs, records, . . .)

• e.g., an if then else stream operator whose first argument is a stream of
booleans

Relevant tasks and future work

Task 1.1 (Adaptation)

• Only streams of naturals with arithmetic operators considered in the calculus

Aims:

• Make the calculus parametric

• Indeed, smoothly extending the approach to other data types (booleans,
pairs, records, . . .)

• e.g., an if then else stream operator whose first argument is a stream of
booleans

Relevant tasks and future work

Task 1.1 (Adaptation)

• Only streams of naturals with arithmetic operators considered in the calculus

Aims:

• Make the calculus parametric

• Indeed, smoothly extending the approach to other data types (booleans,
pairs, records, . . .)

• e.g., an if then else stream operator whose first argument is a stream of
booleans

Relevant tasks and future work

Task 1.1 (Adaptation)

• Only streams of naturals with arithmetic operators considered in the calculus

Aims:

• Make the calculus parametric

• Indeed, smoothly extending the approach to other data types (booleans,
pairs, records, . . .)

• e.g., an if then else stream operator whose first argument is a stream of
booleans

Relevant tasks and future work

Task 3.2 (Integration of static and dynamic verification)

• Untyped calculus

• The well-definedness check takes place at runtime

Aims:

• Design a static type system to filter out early errors

• Reduce runtime overhead identifying ill-formed definitions ahead

Relevant tasks and future work

Task 3.2 (Integration of static and dynamic verification)

• Untyped calculus

• The well-definedness check takes place at runtime

Aims:

• Design a static type system to filter out early errors

• Reduce runtime overhead identifying ill-formed definitions ahead

Relevant tasks and future work

Task 3.2 (Integration of static and dynamic verification)

• Untyped calculus

• The well-definedness check takes place at runtime

Aims:

• Design a static type system to filter out early errors

• Reduce runtime overhead identifying ill-formed definitions ahead

Relevant tasks and future work

Task 3.2 (Integration of static and dynamic verification)

• Untyped calculus

• The well-definedness check takes place at runtime

Aims:

• Design a static type system to filter out early errors

• Reduce runtime overhead identifying ill-formed definitions ahead

Relevant tasks and future work

Task 4.4 (Application scenarios)

• Possibility to generate and manipulate a wide variety of streams

• IoT relevant operations supported

Aims:

• Integration with stream programming:

• Stream generation (sink streams) already supported

• Source streams, pipeline to be investigated

Relevant tasks and future work

Task 4.4 (Application scenarios)

• Possibility to generate and manipulate a wide variety of streams

• IoT relevant operations supported

Aims:

• Integration with stream programming:

• Stream generation (sink streams) already supported

• Source streams, pipeline to be investigated

Relevant tasks and future work

Task 4.4 (Application scenarios)

• Possibility to generate and manipulate a wide variety of streams

• IoT relevant operations supported

Aims:

• Integration with stream programming:

• Stream generation (sink streams) already supported

• Source streams, pipeline to be investigated

Relevant tasks and future work

Task 4.4 (Application scenarios)

• Possibility to generate and manipulate a wide variety of streams

• IoT relevant operations supported

Aims:

• Integration with stream programming:

• Stream generation (sink streams) already supported

• Source streams, pipeline to be investigated

Thank You!

Extras

Examples

Example of equality

Environment ρ ={x 7→ 0:1:(x ∥ x), y 7→ 0:1:((2:y) ∥ y)̂ }

0:1:(x ∥ x) ≡ 0:1:((2:y) ∥ y)̂

↓∗

(x ∥ x) ≡ ((2:y) ∥ y)̂

↓

(x ∥ x) ≡ (y ∥ y)

↓

x ≡ y

Example of equality

Environment ρ ={x 7→ 0:1:(x ∥ x), y 7→ 0:1:((2:y) ∥ y)̂ }

0:1:(x ∥ x) ≡ 0:1:((2:y) ∥ y)̂

↓∗

(x ∥ x) ≡ ((2:y) ∥ y)̂

↓

(x ∥ x) ≡ (y ∥ y)

↓

x ≡ y

Example of equality

Environment ρ ={x 7→ 0:1:(x ∥ x), y 7→ 0:1:((2:y) ∥ y)̂ }

0:1:(x ∥ x) ≡ 0:1:((2:y) ∥ y)̂

↓∗

(x ∥ x) ≡ ((2:y) ∥ y)̂

↓

(x ∥ x) ≡ (y ∥ y)

↓

x ≡ y

Example of equality

Environment ρ ={x 7→ 0:1:(x ∥ x), y 7→ 0:1:((2:y) ∥ y)̂ }

0:1:(x ∥ x) ≡ 0:1:((2:y) ∥ y)̂

↓∗

(x ∥ x) ≡ ((2:y) ∥ y)̂

↓

(x ∥ x) ≡ (y ∥ y)

↓

x ≡ y

Example of equality

Environment ρ ={x 7→ 0:1:(x ∥ x), y 7→ 0:1:((2:y) ∥ y)̂ }

0:1:(x ∥ x) ≡ 0:1:((2:y) ∥ y)̂

↓∗

(x ∥ x) ≡ ((2:y) ∥ y)̂

↓

(x ∥ x) ≡ (y ∥ y)

↓

x ≡ y

Extras

Semantics of the calculus

Rules (1)

(val)

v, ρ, τ ⇓(v, ρ)
(if-t)

be, ρ, τ ⇓(true, ρ) se1, ρ, τ ⇓(s, ρ′)
if be then se1 else se2, ρ, τ ⇓(s, ρ′)

(if-f)
be, ρ, τ ⇓(false, ρ) se2, ρ, τ ⇓(s, ρ′)
if be then se1 else se2, ρ, τ ⇓(s, ρ′)

(cons)
ne, ρ, τ ⇓(n, ρ) se, ρ, τ ⇓(s, ρ′)

ne : se, ρ, τ ⇓(n : s, ρ′)

(tail)
se, ρ, τ ⇓(s, ρ′)

seˆ, ρ, τ ⇓(sˆ, ρ′)
(op)

se1, ρ, τ ⇓(s1, ρ1) se2, ρ, τ ⇓(s2, ρ2)
se1op se2, ρ, τ ⇓(s1op s2, ρ1 ⊔ ρ2)

Rules (2)

(args)

ei , ρ, τ ⇓(vi , ρi) ∀i ∈ 1..n f(v), ρ̂, τ ⇓(s, ρ′)
f(e), ρ, τ ⇓(s, ρ′)

e = e1, . . . , en not of shape v
v = v1, . . . , vn
ρ̂ =

⊔
i∈1..n ρi

(invk)

se[v/x], ρ, τ{f(v) 7→ x}⇓(s, ρ′)
f(v), ρ, τ ⇓(x, ρ′{x 7→ s})

f(v) ̸∈ dom(τ)
x fresh
fbody(f) = (x, se)
wd(ρ′, x, s)

(corec)

f(v), ρ, τ ⇓(x, ρ)
τ(f (v)) = x

Extras

Well-definedness

Well-definedness: an algorithm

m :: = x1 7→ n1 . . . xn 7→ nk (n ≥ 0) map from variables to natural numbers

(main)

wdρ{x 7→v}(x, ∅)
wd(ρ, x, v)

(wd-var)
wdρ(ρ(x),m{x 7→ 0})

wdρ(x,m)
x ̸∈ dom(m) (wd-cons)

wdρ(s,m
+1)

wdρ(n : s,m)

(wd-corec)

wdρ(x,m)

x ∈ dom(m)
m(x) > 0

(wd-fv)

wdρ(x,m)
x ̸∈ dom(ρ) (wd-tail)

wdρ(s,m
−1)

wdρ(sˆ,m)

(wd-nop)
wdρ(s1,m) wdρ(s2,m)

wdρ(s1[op]s2,m)
(wd-∥)

wdρ(s1,m) wdρ(s2,m
+1)

wdρ(s1∥s2,m)

Idea: more constructors than tail operators traversed when a cyclic reference is found

On well-definedness

• zeros()= repeat(0)[*] zeros()

• Not well-defined operationally but admits a unique solution

On well-definedness

• A closed result (s, ρ) is well-defined if it denotes a unique stream

• A closed environment ρ is well-defined if, for each x ∈ dom(ρ), (x, ρ) is
well-defined.

• = the corresponding set of equations admits a unique solution

• {x 7→ 1 : x} well-defined

• {x 7→ x} not well-defined

• {x 7→ x[+]y, y 7→ 1 : y} not well-defined

